找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
查看: 25773|回復(fù): 63
樓主
發(fā)表于 2025-3-21 18:02:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2018
副標題15th European Confer
編輯Vittorio Ferrari,Martial Hebert,Yair Weiss
視頻videohttp://file.papertrans.cn/235/234187/234187.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization;?matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
關(guān)鍵詞3D; artificial intelligence; estimation; face recognition; image processing; image reconstruction; image s
版次1
doihttps://doi.org/10.1007/978-3-030-01216-8
isbn_softcover978-3-030-01215-1
isbn_ebook978-3-030-01216-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Computer Vision – ECCV 2018影響因子(影響力)




書目名稱Computer Vision – ECCV 2018影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2018被引頻次




書目名稱Computer Vision – ECCV 2018被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2018年度引用




書目名稱Computer Vision – ECCV 2018年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2018讀者反饋




書目名稱Computer Vision – ECCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:17:57 | 只看該作者
TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapesrefreshing the performance records on various standard benchmarks. However, limited by the representations (axis-aligned rectangles, rotated rectangles or quadrangles) adopted to describe text, existing methods may fall short when dealing with much more free-form text instances, such as curved text,
板凳
發(fā)表于 2025-3-22 00:35:55 | 只看該作者
地板
發(fā)表于 2025-3-22 06:22:28 | 只看該作者
Robust Image Stitching with Multiple Registrationst is also used by millions of consumers in smartphones and other cameras. Traditionally, the problem is decomposed into three phases: registration, which picks a single transformation of each source image to align it to the other inputs, seam?finding, which selects a source image for each pixel in t
5#
發(fā)表于 2025-3-22 11:16:57 | 只看該作者
CTAP: Complementary Temporal Action Proposal Generationral intervals in videos that are likely to contain an action. Previous methods can be divided to two groups: sliding window ranking and actionness score grouping. Sliding windows uniformly cover all segments in videos, but the temporal boundaries are imprecise; grouping based method may have more pr
6#
發(fā)表于 2025-3-22 13:34:28 | 只看該作者
Effective Use of Synthetic Data for Urban Scene Semantic Segmentationges, researchers have investigated the use of synthetic data, which can be labeled automatically. Unfortunately, a network trained on synthetic data performs relatively poorly on real images. While this can be addressed by domain adaptation, existing methods all require having access to real images
7#
發(fā)表于 2025-3-22 18:59:08 | 只看該作者
8#
發(fā)表于 2025-3-22 21:43:39 | 只看該作者
9#
發(fā)表于 2025-3-23 03:06:32 | 只看該作者
Linear Span Network for Object Skeleton Detectionrst re-visit the implementation of HED, the essential principle of which can be ideally described with a linear reconstruction model. Hinted by this, we formalize a Linear Span framework, and propose Linear Span Network (LSN) which introduces Linear Span Units (LSUs) to minimizes the reconstruction
10#
發(fā)表于 2025-3-23 06:58:42 | 只看該作者
SaaS: Speed as a Supervisor for Semi-supervised Learning measure the quality of an iterative estimate of the posterior probability of unknown labels. Training speed in supervised learning correlates strongly with the percentage of correct labels, so we use it as an inference criterion for the unknown labels, without attempting to infer the model paramete
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 00:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁海县| 达州市| 同德县| 高青县| 大足县| 南通市| 富裕县| 鹰潭市| 正宁县| 攀枝花市| 增城市| 兴仁县| 施甸县| 布拖县| 突泉县| 中牟县| 潼南县| 启东市| 垫江县| 彭泽县| 容城县| 廉江市| 明溪县| 山丹县| 清涧县| 澄城县| 远安县| 隆德县| 华容县| 南和县| 繁昌县| 唐河县| 五常市| 西城区| 当涂县| 南雄市| 金湖县| 大邑县| 陵水| 方城县| 永德县|