找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
查看: 13171|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:53:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2018
副標題15th European Confer
編輯Vittorio Ferrari,Martial Hebert,Yair Weiss
視頻videohttp://file.papertrans.cn/235/234186/234186.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization;?matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
關(guān)鍵詞3D; artificial intelligence; computer vision; image coding; image processing; image reconstruction; image
版次1
doihttps://doi.org/10.1007/978-3-030-01264-9
isbn_softcover978-3-030-01263-2
isbn_ebook978-3-030-01264-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Computer Vision – ECCV 2018影響因子(影響力)




書目名稱Computer Vision – ECCV 2018影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2018被引頻次




書目名稱Computer Vision – ECCV 2018被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2018年度引用




書目名稱Computer Vision – ECCV 2018年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2018讀者反饋




書目名稱Computer Vision – ECCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:19:27 | 只看該作者
The Dynamics of Employee Relations-based paradigm, more traditional boundary-based methods such as Intelligent Scissor are still popular in practice as they allow users to have active control of the object boundaries. Existing methods for boundary-based segmentation solely rely on low-level image features, such as edges for boundary
板凳
發(fā)表于 2025-3-22 04:17:45 | 只看該作者
https://doi.org/10.1007/978-1-349-14314-6photons scattered by the body as noise or disturbance to be disposed of, either by acquisition hardware (an anti-scatter grid) or by the reconstruction software. This increases the radiation dose delivered to the patient. Treating these scattered photons as a source of information, we solve an inver
地板
發(fā)表于 2025-3-22 06:19:34 | 只看該作者
5#
發(fā)表于 2025-3-22 12:05:41 | 只看該作者
Valeria Costantini,Massimiliano Mazzantil max/average pooling layer between the convolution and fully-connected layers to retain translation invariance and shape preserving (aware of shape difference) properties based on the shift theorem of the Fourier transform. Thanks to the ability to handle image misalignment while keeping important
6#
發(fā)表于 2025-3-22 13:41:44 | 只看該作者
https://doi.org/10.1007/978-94-007-5089-0, speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical . for effici
7#
發(fā)表于 2025-3-22 17:51:26 | 只看該作者
Carbon Leakage and Trade Adjustment Policiesadapt it to the end-to-end training of visual features on large-scale datasets. In this work, we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a s
8#
發(fā)表于 2025-3-22 22:51:03 | 只看該作者
9#
發(fā)表于 2025-3-23 05:19:51 | 只看該作者
10#
發(fā)表于 2025-3-23 09:19:56 | 只看該作者
https://doi.org/10.1007/978-94-015-0945-9understandings. Data-driven approaches, such as deep neural networks, can deal with the ambiguity inherent in this task to some extent, but it is extremely expensive to acquire the temporal annotations of a large-scale video dataset. To leverage the plentiful web-crawled videos to improve the perfor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵宝市| 峨眉山市| 图木舒克市| 正阳县| 太仓市| 武鸣县| 北宁市| 小金县| 娄烦县| 安泽县| 诸暨市| 高邑县| 溧阳市| 屏边| 堆龙德庆县| 金秀| 尼玛县| 长垣县| 涟水县| 玛沁县| 呼伦贝尔市| 杭锦后旗| 贞丰县| 原阳县| 澳门| 岑溪市| 高安市| 安西县| 澄迈县| 宣化县| 临沭县| 麟游县| 高青县| 西平县| 崇州市| 临夏市| 南华县| 凤阳县| 定襄县| 青川县| 宣汉县|