找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2016; 14th European Confer Bastian Leibe,Jiri Matas,Max Welling Conference proceedings 2016 Springer International P

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:55:38 | 只看該作者
32#
發(fā)表于 2025-3-27 03:07:00 | 只看該作者
Spatio-Temporally Consistent Correspondence for Dense Dynamic Scene Modelingcal image sequences. The obtained results for these two problems on multiple publicly available dynamic reconstruction datasets illustrate both the effectiveness and generality of our proposed approach.
33#
發(fā)表于 2025-3-27 05:50:23 | 只看該作者
34#
發(fā)表于 2025-3-27 12:19:17 | 只看該作者
Visualizing Image Priors to study various popular image models, and reveal interesting behaviors, which were not noticed in the past. We confirm our findings through denoising experiments. These validate that the structures we reveal as ‘optimal’ for a specific prior are indeed better denoised by this prior.
35#
發(fā)表于 2025-3-27 16:02:55 | 只看該作者
36#
發(fā)表于 2025-3-27 18:16:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:58:13 | 只看該作者
Deep Learning 3D Shape Surfaces Using Geometry Imagescut to convert the original 3D shape into a flat and regular geometry image. We propose a way to implicitly learn the topology and structure of 3D shapes using geometry images encoded with suitable features. We show the efficacy of our approach to learn 3D shape surfaces for classification and retrieval tasks on non-rigid and rigid shape datasets.
38#
發(fā)表于 2025-3-28 02:30:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:27:15 | 只看該作者
Learning Semantic Deformation Flows with 3D Convolutional Networksdetail information. Our experiments show that the CNN approach achieves comparable results with state of the art methods when applied to CAD models. When applied to single frame depth scans, and partial/noisy CAD models we achieve . less error compared to the state-of-the-art.
40#
發(fā)表于 2025-3-28 12:30:38 | 只看該作者
Conference proceedings 2016eo: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action, activity and tracking; 3D; and 9 poster sessions..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓台县| 枝江市| 榆中县| 石渠县| 巨鹿县| 邳州市| 扬州市| 开封县| 平乐县| 北宁市| 镇赉县| 沅江市| 西安市| 凤台县| 溧水县| 日喀则市| 平谷区| 荥阳市| 威信县| 陆河县| 武安市| 泰顺县| 灵宝市| 卓资县| 麦盖提县| 鞍山市| 舒兰市| 松潘县| 黄梅县| 松阳县| 沐川县| 西吉县| 青田县| 临夏市| 靖西县| 乳山市| 五常市| 阜康市| 罗定市| 伊吾县| 翁源县|