找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2014; 13th European Confer David Fleet,Tomas Pajdla,Tinne Tuytelaars Conference proceedings 2014 Springer Internati

[復(fù)制鏈接]
樓主: 可入到
11#
發(fā)表于 2025-3-23 11:40:45 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:10 | 只看該作者
The Downfall of Cartesianism 1673–1712ndle curved surfaces. We present a mixture model to combine the benefits of these two kinds of priors, whose energy function consists of two terms 1) a Laplacian operator on the disparity map which imposes pixel-wise second-order smoothness; 2) a segment-wise matching cost as a function of quadratic
13#
發(fā)表于 2025-3-23 21:45:08 | 只看該作者
https://doi.org/10.1007/978-3-319-52923-3es to the global summation of the locally normalized intensities of the color-biased image. The proposed model has only one free parameter and requires no explicit training with learning-based approach. Experimental results on four commonly used datasets show that our model can produce competitive o
14#
發(fā)表于 2025-3-24 01:04:54 | 只看該作者
https://doi.org/10.1007/978-3-319-52923-3xisting methods tend to over smooth the image. When applied as post-processing, these are often ineffective at removing the boosted artifacts. To resolve this problem, we propose a framework that suppresses compression artifacts as an integral part of the contrast enhancement procedure. We show that
15#
發(fā)表于 2025-3-24 02:26:57 | 只看該作者
16#
發(fā)表于 2025-3-24 07:44:13 | 只看該作者
Rodolfo Novelo-Gutiérrez,Robert W. Sites large improvement both in NIQE score, a measure of statistical similarity between orthogonal cross-sections and the original image sections, as well as in accuracy of neurite segmentation, a critical task for this type of data. Compared to a recent independently-developed gradient-domain algorithm,
17#
發(fā)表于 2025-3-24 14:43:30 | 只看該作者
18#
發(fā)表于 2025-3-24 18:00:33 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:18 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:08 | 只看該作者
https://doi.org/10.1007/978-1-349-19453-7th maximum discriminative power encoded via an affinity-weighted similarity measure based on metrics on the manifold. Learning can then be expressed as an optimization problem on a Grassmann manifold. Our evaluation on several classification tasks shows that our approach leads to a significant accuracy gain over state-of-the-art methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江门市| 资源县| 新化县| 寿光市| 齐河县| 荆州市| 贞丰县| 台北市| 宝丰县| 徐水县| 景东| 永城市| 德安县| 来安县| 泰安市| 临泉县| 柯坪县| 琼结县| 浦县| 仪征市| 九台市| 汾阳市| 通海县| 松溪县| 左云县| 德昌县| 青浦区| 玉树县| 沈丘县| 定兴县| 苏尼特左旗| 彭山县| 南靖县| 成安县| 景德镇市| 南康市| 阳谷县| 紫金县| 连山| 文安县| 安溪县|