找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2014; 13th European Confer David Fleet,Tomas Pajdla,Tinne Tuytelaars Conference proceedings 2014 Springer Internati

[復(fù)制鏈接]
樓主: Myelopathy
41#
發(fā)表于 2025-3-28 15:38:21 | 只看該作者
Schwarps: Locally Projective Image Warps Based on 2D Schwarzian Derivativesrp’s smoothness is to penalize its second order partial derivatives. Because this favors locally affine warps, this fails to capture the local projective component of the image deformation. This may have a negative impact on applications such as image registration and deformable 3D reconstruction. W
42#
發(fā)表于 2025-3-28 18:57:25 | 只看該作者
43#
發(fā)表于 2025-3-28 23:01:03 | 只看該作者
Generalized Connectivity Constraints for Spatio-temporal 3D Reconstructions by precomputing a geodesic shortest path tree on the occupancy likelihood. Connectivity of the final occupancy labeling is ensured with a set of linear constraints on the labeling function. In order to generalize the connectivity constraints from objects with genus 0 to an arbitrary genus, we dete
44#
發(fā)表于 2025-3-29 05:04:34 | 只看該作者
Passive Tomography of Turbulence Strengthcal measure of local variations in the turbulent medium. It influences engineering decisions made in these domains. Turbulence strength (TS) also affects safety of aircraft and tethered balloons, and reliability of free-space electromagnetic relays. We show that it is possible to estimate TS, withou
45#
發(fā)表于 2025-3-29 10:50:47 | 只看該作者
46#
發(fā)表于 2025-3-29 13:40:29 | 只看該作者
Improved Motion Invariant Deblurring through Motion Estimationnvariance is that, unlike other computational photographic techniques, it does not require pre-exposure velocity estimation in order to ensure numerically stable deblurring. Its disadvantage is that the invariance is only approximate - objects moving with non-zero velocity will exhibit artifacts in
47#
發(fā)表于 2025-3-29 18:46:52 | 只看該作者
48#
發(fā)表于 2025-3-29 22:15:31 | 只看該作者
49#
發(fā)表于 2025-3-30 01:36:54 | 只看該作者
Learning the Face Prior for Bayesian Face Recognitionons, expressions, aging, and occlusions in the wild. In this paper, we propose a new approach to learn the face prior for Bayesian face recognition. First, we extend Manifold Relevance Determination to learn the identity subspace for each individual automatically. Based on the structure of the learn
50#
發(fā)表于 2025-3-30 07:46:35 | 只看該作者
Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsityon but for one problem. Features typically are confounded by alignment error in space and time. As a consequence, high-dimensional representations such as SIFT and Gabor features have been favored despite their much greater computational cost and potential loss of information. We propose a Kernel St
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漳浦县| 图木舒克市| 托克逊县| 新巴尔虎右旗| 师宗县| 申扎县| 芮城县| 武川县| 苍梧县| 曲水县| 定西市| 徐州市| 惠来县| 遂溪县| 中超| 黄石市| 太和县| 长乐市| 洛南县| 宣威市| 怀集县| 锡林郭勒盟| 盐边县| 土默特左旗| 巴青县| 广宗县| 驻马店市| 临夏县| 安新县| 阿城市| 始兴县| 横山县| 冀州市| 西宁市| 安宁市| 南川市| 科技| 乳源| 濮阳县| 沧源| 华容县|