找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[復(fù)制鏈接]
查看: 28912|回復(fù): 67
樓主
發(fā)表于 2025-3-21 18:59:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision -- ECCV 2010
副標(biāo)題11th European Confer
編輯Kostas Daniilidis,Petros Maragos,Nikos Paragios
視頻videohttp://file.papertrans.cn/235/234155/234155.mp4
概述Fast-track conference proceedings
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver
描述The 2010 edition of the European Conference on Computer Vision was held in Heraklion, Crete. The call for papers attracted an absolute record of 1,174 submissions. We describe here the selection of the accepted papers: Thirty-eight area chairs were selected coming from Europe (18), USA and Canada (16), and Asia (4). Their selection was based on the following criteria: (1) Researchers who had served at least two times as Area Chairs within the past two years at major vision conferences were excluded; (2) Researchers who served as Area Chairs at the 2010 Computer Vision and Pattern Recognition were also excluded (exception: ECCV 2012 Program Chairs); (3) Minimization of overlap introduced by Area Chairs being former student and advisors; (4) 20% of the Area Chairs had never served before in a major conference; (5) The Area Chair selection process made all possible efforts to achieve a reasonable geographic distribution between countries, thematic areas and trends in computer vision. EachArea Chair was assigned by the Program Chairs between 28–32 papers. Based on paper content, the Area Chair recommended up to seven potential reviewers per paper. Such assignment was made using all rev
出版日期Conference proceedings 2010
關(guān)鍵詞biometrics; computational imaging; face recognition; gesture recognition; illumination; image alignment; i
版次1
doihttps://doi.org/10.1007/978-3-642-15567-3
isbn_softcover978-3-642-15566-6
isbn_ebook978-3-642-15567-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Computer Vision -- ECCV 2010影響因子(影響力)




書目名稱Computer Vision -- ECCV 2010影響因子(影響力)學(xué)科排名




書目名稱Computer Vision -- ECCV 2010網(wǎng)絡(luò)公開度




書目名稱Computer Vision -- ECCV 2010網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision -- ECCV 2010被引頻次




書目名稱Computer Vision -- ECCV 2010被引頻次學(xué)科排名




書目名稱Computer Vision -- ECCV 2010年度引用




書目名稱Computer Vision -- ECCV 2010年度引用學(xué)科排名




書目名稱Computer Vision -- ECCV 2010讀者反饋




書目名稱Computer Vision -- ECCV 2010讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:55:39 | 只看該作者
Stacked Hierarchical Labeling the image and contextual statistics in the scene. This hierarchy spans coarse-to-fine regions and explicitly models the mixtures of semantic labels that may be present due to imperfect segmentation. To avoid cascading of errors and overfitting, we train the learning problems in sequence to ensure r
地板
發(fā)表于 2025-3-22 04:40:50 | 只看該作者
5#
發(fā)表于 2025-3-22 11:32:22 | 只看該作者
On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentationey findings for learning CRF models are, from the obvious to the surprising, i) multiple image features always help, ii) the limiting dimension with respect to current models is the amount of training data, iii) piecewise training is competitive, iv) current methods for max-margin training fail for
6#
發(fā)表于 2025-3-22 13:08:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:36 | 只看該作者
Detecting People Using Mutually Consistent Poselet Activationsstered into mutually consistent hypotheses where consistency is based on empirically determined spatial keypoint distributions. Finally, bounding boxes are predicted for each person hypothesis and shape masks are aligned to edges in the image to provide a segmentation. To the best of our knowledge,
8#
發(fā)表于 2025-3-22 22:52:41 | 只看該作者
9#
發(fā)表于 2025-3-23 01:46:26 | 只看該作者
Learning to Detect Roads in High-Resolution Aerial Imagestly developed unsupervised learning methods as well as by taking advantage of the local spatial coherence of the output labels. We show that our method works reliably on two challenging urban datasets that are an order of magnitude larger than what was used to evaluate previous approaches.
10#
發(fā)表于 2025-3-23 05:38:20 | 只看該作者
Thinking Inside the Box: Using Appearance Models and Context Based on Room Geometry accuracy when compared to the state-of-the-art 2D detectors and (b) gives a 3D interpretation of the location of the object, derived from a 2D image. We evaluate the detector on beds, for which we give extensive quantitative results derived from images of real scenes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄱阳县| 枣强县| 蕲春县| 小金县| 二手房| 那曲县| 德州市| 竹北市| 乐至县| 广饶县| 满洲里市| 南投县| 攀枝花市| 织金县| 柳河县| 隆昌县| 广昌县| 家居| 永福县| 常熟市| 司法| 宿迁市| 平武县| 和林格尔县| 紫阳县| 江山市| 凤凰县| 邮箱| 磴口县| 邹城市| 台东县| 淮安市| 武宁县| 惠来县| 宕昌县| SHOW| 贵定县| 阳江市| 年辖:市辖区| 韶山市| 乐安县|