找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[復(fù)制鏈接]
樓主: 貧血
31#
發(fā)表于 2025-3-26 22:15:05 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:25 | 只看該作者
Doug Easterling,Howard Kunreutherrmulations. On our dataset composed of 350 artistic and 500 daily photographs, we achieve a 89.5% classification accuracy in cross-validated tests, and the assessment model assigns reasonable numerical scores based on portraits’ aesthetic quality in lighting.
33#
發(fā)表于 2025-3-27 08:10:29 | 只看該作者
The Dilemmas of Brief Psychotherapyework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
34#
發(fā)表于 2025-3-27 10:56:37 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8ication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
35#
發(fā)表于 2025-3-27 14:27:49 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
36#
發(fā)表于 2025-3-27 20:26:13 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:36 | 只看該作者
38#
發(fā)表于 2025-3-28 03:59:22 | 只看該作者
Max-Margin Dictionary Learning for Multiclass Image Categorizationework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
39#
發(fā)表于 2025-3-28 08:17:55 | 只看該作者
Weakly Supervised Classification of Objects in Images Using Soft Random Forestsication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
40#
發(fā)表于 2025-3-28 11:59:35 | 只看該作者
Adapting Visual Category Models to New Domains, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安庆市| 玉溪市| 景泰县| 隆回县| 绥芬河市| 商河县| 辰溪县| 南岸区| 满洲里市| 霍邱县| 柞水县| 通城县| 喀喇沁旗| 石楼县| 石景山区| 华容县| 石泉县| 连江县| 宁武县| 灵璧县| 庆云县| 蓬溪县| 黑龙江省| 汉沽区| 西畴县| 乡城县| 磴口县| 信宜市| 谢通门县| 开鲁县| 龙游县| 太仆寺旗| 海丰县| 日土县| 满城县| 绥棱县| 商水县| 北碚区| 重庆市| 大竹县| 左云县|