找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[復(fù)制鏈接]
樓主: 貧血
31#
發(fā)表于 2025-3-26 22:15:05 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:25 | 只看該作者
Doug Easterling,Howard Kunreutherrmulations. On our dataset composed of 350 artistic and 500 daily photographs, we achieve a 89.5% classification accuracy in cross-validated tests, and the assessment model assigns reasonable numerical scores based on portraits’ aesthetic quality in lighting.
33#
發(fā)表于 2025-3-27 08:10:29 | 只看該作者
The Dilemmas of Brief Psychotherapyework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
34#
發(fā)表于 2025-3-27 10:56:37 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8ication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
35#
發(fā)表于 2025-3-27 14:27:49 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
36#
發(fā)表于 2025-3-27 20:26:13 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:36 | 只看該作者
38#
發(fā)表于 2025-3-28 03:59:22 | 只看該作者
Max-Margin Dictionary Learning for Multiclass Image Categorizationework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
39#
發(fā)表于 2025-3-28 08:17:55 | 只看該作者
Weakly Supervised Classification of Objects in Images Using Soft Random Forestsication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
40#
發(fā)表于 2025-3-28 11:59:35 | 只看該作者
Adapting Visual Category Models to New Domains, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂荣县| 鹰潭市| 南漳县| 盘山县| 利津县| 巴塘县| 册亨县| 资溪县| 涟水县| 忻州市| 遂宁市| 土默特左旗| 礼泉县| 漳州市| 吕梁市| 和林格尔县| 沐川县| 额敏县| 西华县| 哈密市| 三门峡市| 鄂伦春自治旗| 凤冈县| 巴林左旗| 石泉县| 石城县| 高要市| 娱乐| 尤溪县| 峨山| 团风县| 瑞丽市| 常熟市| 格尔木市| 霍邱县| 桃源县| 乐都县| 佳木斯市| 广元市| 柳林县| 于田县|