找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ECCV 2008; 10th European Confer David Forsyth,Philip Torr,Andrew Zisserman Conference proceedings 2008 Springer-Verlag Be

[復(fù)制鏈接]
樓主: Stubborn
21#
發(fā)表于 2025-3-25 05:32:32 | 只看該作者
Yingxin Li,Fukang Liu,Gaoli WangILSS. We show highly competitive object categorization results on the Caltech dataset. To evaluate the performance of our algorithm further, we introduce the challenging Landmarks-18 dataset, a collection of photographs of famous landmarks from around the world. The results on this new dataset show the great potential of our proposed algorithm.
22#
發(fā)表于 2025-3-25 11:31:22 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:07 | 只看該作者
24#
發(fā)表于 2025-3-25 17:57:02 | 只看該作者
25#
發(fā)表于 2025-3-25 23:30:33 | 只看該作者
Keypoint Signatures for Fast Learning and Recognition fact that if we train a Randomized Tree classifier to recognize a number of keypoints extracted from an image database, all other keypoints can be characterized in terms of their response to these classification trees. This signature is fast to compute and has a discriminative power that is comparable to that of the much slower SIFT descriptor.
26#
發(fā)表于 2025-3-26 00:27:05 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:03 | 只看該作者
Scale Invariant Action Recognition Using Compound Features Mined from Dense Spatio-temporal Cornersuperior performance to other state-of-the-art approaches (including those based upon sparse feature detectors). Furthermore, the approach requires only weak supervision in the form of class labels for each training sequence. No ground truth position or temporal alignment is required during training.
28#
發(fā)表于 2025-3-26 10:09:37 | 只看該作者
Semi-supervised On-Line Boosting for Robust Tracking given prior and an on-line classifier. This comes without any parameter tuning. In the experiments, we demonstrate real-time tracking of our SemiBoost tracker on several challenging test sequences where our tracker outperforms other on-line tracking methods.
29#
發(fā)表于 2025-3-26 14:53:21 | 只看該作者
30#
發(fā)表于 2025-3-26 20:46:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潞城市| 手机| 廉江市| 麻城市| 修文县| 黄浦区| 临颍县| 双桥区| 马关县| 大姚县| 得荣县| 麻城市| 邯郸县| 嘉峪关市| 普洱| 陇西县| 济源市| 泊头市| 广南县| 杭锦旗| 德江县| 调兵山市| 固原市| 宁津县| 定日县| 镶黄旗| 辉县市| 河北省| 获嘉县| 纳雍县| 西充县| 斗六市| 葫芦岛市| 六安市| 新野县| 利辛县| 永和县| 扎赉特旗| 晋城| 青海省| 玉山县|