找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ECCV 2008; 10th European Confer David Forsyth,Philip Torr,Andrew Zisserman Conference proceedings 2008 Springer-Verlag Be

[復制鏈接]
樓主: Stubborn
21#
發(fā)表于 2025-3-25 05:32:32 | 只看該作者
Yingxin Li,Fukang Liu,Gaoli WangILSS. We show highly competitive object categorization results on the Caltech dataset. To evaluate the performance of our algorithm further, we introduce the challenging Landmarks-18 dataset, a collection of photographs of famous landmarks from around the world. The results on this new dataset show the great potential of our proposed algorithm.
22#
發(fā)表于 2025-3-25 11:31:22 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:07 | 只看該作者
24#
發(fā)表于 2025-3-25 17:57:02 | 只看該作者
25#
發(fā)表于 2025-3-25 23:30:33 | 只看該作者
Keypoint Signatures for Fast Learning and Recognition fact that if we train a Randomized Tree classifier to recognize a number of keypoints extracted from an image database, all other keypoints can be characterized in terms of their response to these classification trees. This signature is fast to compute and has a discriminative power that is comparable to that of the much slower SIFT descriptor.
26#
發(fā)表于 2025-3-26 00:27:05 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:03 | 只看該作者
Scale Invariant Action Recognition Using Compound Features Mined from Dense Spatio-temporal Cornersuperior performance to other state-of-the-art approaches (including those based upon sparse feature detectors). Furthermore, the approach requires only weak supervision in the form of class labels for each training sequence. No ground truth position or temporal alignment is required during training.
28#
發(fā)表于 2025-3-26 10:09:37 | 只看該作者
Semi-supervised On-Line Boosting for Robust Tracking given prior and an on-line classifier. This comes without any parameter tuning. In the experiments, we demonstrate real-time tracking of our SemiBoost tracker on several challenging test sequences where our tracker outperforms other on-line tracking methods.
29#
發(fā)表于 2025-3-26 14:53:21 | 只看該作者
30#
發(fā)表于 2025-3-26 20:46:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 18:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
应用必备| 大荔县| 仙居县| 子洲县| 隆回县| 大余县| 和平区| 章丘市| 荔波县| 新闻| 旺苍县| 隆化县| 兴化市| 漳州市| 顺昌县| 肇源县| 龙井市| 宣城市| 璧山县| 潼南县| 肇源县| 榕江县| 永福县| 高淳县| 安岳县| 大埔县| 莆田市| 张北县| 永登县| 阳山县| 海阳市| 观塘区| 桓台县| 日土县| 南雄市| 抚宁县| 铅山县| 蓬溪县| 镇远县| 科技| 皮山县|