找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2006; 9th European Confere Ale? Leonardis,Horst Bischof,Axel Pinz Conference proceedings 2006 Springer-Verlag Berli

[復(fù)制鏈接]
查看: 41055|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:33:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision -- ECCV 2006
副標(biāo)題9th European Confere
編輯Ale? Leonardis,Horst Bischof,Axel Pinz
視頻videohttp://file.papertrans.cn/235/234142/234142.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision -- ECCV 2006; 9th European Confere Ale? Leonardis,Horst Bischof,Axel Pinz Conference proceedings 2006 Springer-Verlag Berli
出版日期Conference proceedings 2006
關(guān)鍵詞3D reconstruction; Bayesian inference; Fuzzy; Stereo; algorithms; classification; computer vision; face rec
版次1
doihttps://doi.org/10.1007/11744023
isbn_softcover978-3-540-33832-1
isbn_ebook978-3-540-33833-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Computer Vision -- ECCV 2006影響因子(影響力)




書目名稱Computer Vision -- ECCV 2006影響因子(影響力)學(xué)科排名




書目名稱Computer Vision -- ECCV 2006網(wǎng)絡(luò)公開度




書目名稱Computer Vision -- ECCV 2006網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision -- ECCV 2006被引頻次




書目名稱Computer Vision -- ECCV 2006被引頻次學(xué)科排名




書目名稱Computer Vision -- ECCV 2006年度引用




書目名稱Computer Vision -- ECCV 2006年度引用學(xué)科排名




書目名稱Computer Vision -- ECCV 2006讀者反饋




書目名稱Computer Vision -- ECCV 2006讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:59 | 只看該作者
Weakly Supervised Learning of Part-Based Spatial Models for Visual Object Recognitionon about class membership (and not object location or configuration). This method learns both a model of local part appearance and a model of the spatial relations between those parts. In contrast, other work using such a weakly supervised learning paradigm has not considered the problem of simultan
板凳
發(fā)表于 2025-3-22 03:59:29 | 只看該作者
Hyperfeatures – Multilevel Local Coding for Visual Recognitionto local occlusions and to geometric and photometric variations, but they are not able to exploit spatial co-occurrence statistics at scales larger than their local input patches. We present a new multilevel visual representation, ‘hyperfeatures’, that is designed to remedy this. The starting point
地板
發(fā)表于 2025-3-22 05:43:15 | 只看該作者
Riemannian Manifold Learning for Nonlinear Dimensionality Reductionce. We propose an efficient algorithm called Riemannian manifold learning (RML). A Riemannian manifold can be constructed in the form of a simplicial complex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian normal coordinates (RN
5#
發(fā)表于 2025-3-22 09:29:49 | 只看該作者
6#
發(fā)表于 2025-3-22 14:20:32 | 只看該作者
Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusiontion structure and present a novel perspective revealing the two key factors in information utilization: class-relevance and redundancy. We derive a new information decomposition model where a novel concept called class-relevant redundancy is introduced. Subsequently a new algorithm called Condition
7#
發(fā)表于 2025-3-22 18:05:23 | 只看該作者
8#
發(fā)表于 2025-3-23 01:13:42 | 只看該作者
9#
發(fā)表于 2025-3-23 05:21:18 | 只看該作者
Riemannian Manifold Learning for Nonlinear Dimensionality Reductioncomplex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian normal coordinates (RNC). Experimental results demonstrate that our algorithm can learn the data’s intrinsic geometric structure, yielding uniformly distributed and well organized low-dimensional embedding data.
10#
發(fā)表于 2025-3-23 05:41:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 15:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿州市| 大英县| 华阴市| 福泉市| 聂荣县| 华宁县| 平塘县| 延寿县| 永靖县| 榆林市| 焦作市| 南靖县| 固原市| 华安县| 双峰县| 湘西| 长沙县| 朔州市| 镇赉县| 哈巴河县| 叶城县| 庆元县| 昂仁县| 涿州市| 宝丰县| 化州市| 龙胜| 靖州| 德庆县| 青州市| 通城县| 美姑县| 额敏县| 洪洞县| 甘南县| 疏勒县| 蕲春县| 新建县| 衡南县| 淮阳县| 双辽市|