找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2022; 16th Asian Conferenc Lei Wang,Juergen Gall,Rama Chellappa Conference proceedings 2023 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 我沒有辱罵
11#
發(fā)表于 2025-3-23 10:32:21 | 只看該作者
12#
發(fā)表于 2025-3-23 14:57:31 | 只看該作者
13#
發(fā)表于 2025-3-23 21:55:56 | 只看該作者
3D-C2FT: Coarse-to-Fine Transformer for?Multi-view 3D Reconstructionn attention mechanism to explore the multi-view features and exploit their relations for reinforcing the encoding-decoding modules. This paper proposes a new model, namely 3D coarse-to-fine transformer (3D-C2FT), by introducing a novel coarse-to-fine (C2F) attention mechanism for encoding multi-view
14#
發(fā)表于 2025-3-24 00:34:22 | 只看該作者
SymmNeRF: Learning to?Explore Symmetry Prior for?Single-View View Synthesishesis. However, they still fail to recover the fine appearance details, especially in self-occluded areas. This is because a single view only provides limited information. We observe that man-made objects usually exhibit symmetric appearances, which introduce additional prior knowledge. Motivated by
15#
發(fā)表于 2025-3-24 05:14:18 | 只看該作者
Meta-Det3D: Learn to?Learn Few-Shot 3D Object Detection samples from novel classes for training. Our model has two major components: a . and a .. Given a query 3D point cloud and a few support samples, the 3D meta-detector is trained over different 3D detection tasks to learn task distributions for different object classes and dynamically adapt the 3D o
16#
發(fā)表于 2025-3-24 08:02:18 | 只看該作者
ReAGFormer: Reaggregation Transformer with?Affine Group Features for?3D Object Detectionm the raw point clouds for 3D object detection, most previous researches utilize PointNet and its variants as the feature learning backbone and have seen encouraging results. However, these methods capture point features independently without modeling the interaction between points, and simple symme
17#
發(fā)表于 2025-3-24 14:01:12 | 只看該作者
Training-Free NAS for?3D Point Cloud Processingity of existing networks are relatively fixed, which makes it difficult for them to be flexibly applied to devices with different computational constraints. Instead of manually designing the network structure for each specific device, in this paper, we propose a novel training-free neural architectu
18#
發(fā)表于 2025-3-24 18:53:14 | 只看該作者
: Optimal Oblivious RAM with?Integrityction scanned blueprint images. Qualitative and quantitative evaluations demonstrate the effectiveness of the approach, making significant boost in standard vectorization metrics over the current state-of-the-art and baseline methods. We will share our code at ..
19#
發(fā)表于 2025-3-24 21:09:22 | 只看該作者
Vectorizing Building Blueprintsction scanned blueprint images. Qualitative and quantitative evaluations demonstrate the effectiveness of the approach, making significant boost in standard vectorization metrics over the current state-of-the-art and baseline methods. We will share our code at ..
20#
發(fā)表于 2025-3-25 02:59:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 陇南市| 太原市| 滦南县| 遂昌县| 醴陵市| 林西县| 佛山市| 津市市| 连城县| 海林市| 文昌市| 逊克县| 盖州市| 平舆县| 盘锦市| 宝应县| 出国| 成武县| 永仁县| 曲阳县| 开江县| 通许县| 广河县| 宜阳县| 五常市| 浏阳市| 长春市| 唐海县| 新龙县| 依安县| 富裕县| 康平县| 平江县| 顺昌县| 永修县| 西丰县| 青海省| 乌拉特前旗| 漳平市| 本溪市|