找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
查看: 25042|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:53:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ACCV 2020
副標(biāo)題15th Asian Conferenc
編輯Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi
視頻videohttp://file.papertrans.cn/235/234132/234132.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi
描述The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.*.The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; segmentation and grouping..Part II: low-level vision, image processing; motion and tracking..Part III: recognition and detection; optimization, statistical methods, and learning; robot vision.Part IV: deep learning for computer vision, generative models for computer vision..Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis..Part VI: applications of computer vision; vision for X; datasets and performance analysis..*The conference was held virtually..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; biomedical image analysis; computer networks; computer vision; databases; image
版次1
doihttps://doi.org/10.1007/978-3-030-69544-6
isbn_softcover978-3-030-69543-9
isbn_ebook978-3-030-69544-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Computer Vision – ACCV 2020影響因子(影響力)




書目名稱Computer Vision – ACCV 2020影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ACCV 2020網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ACCV 2020網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ACCV 2020被引頻次




書目名稱Computer Vision – ACCV 2020被引頻次學(xué)科排名




書目名稱Computer Vision – ACCV 2020年度引用




書目名稱Computer Vision – ACCV 2020年度引用學(xué)科排名




書目名稱Computer Vision – ACCV 2020讀者反饋




書目名稱Computer Vision – ACCV 2020讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:33 | 只看該作者
Günther Schuh,Patrick Wegehauptnce, EdgeCRF based on patches extracted from colour edges works effectively only when the presence of noise is insignificant, which is not the case for many real images; and, CRFNet, a recent method based on fully supervised deep learning works only for the CRFs that are in the training data, and he
板凳
發(fā)表于 2025-3-22 01:07:13 | 只看該作者
地板
發(fā)表于 2025-3-22 08:13:33 | 只看該作者
https://doi.org/10.1007/978-3-642-17032-4 work, we explore learning from abundant, randomly generated synthetic data, together with unlabeled or partially labeled target domain data, instead. Randomly generated synthetic data has the advantage of controlled variability in the lane geometry and lighting, but it is limited in terms of photo-
5#
發(fā)表于 2025-3-22 09:02:41 | 只看該作者
6#
發(fā)表于 2025-3-22 13:49:45 | 只看該作者
https://doi.org/10.1007/978-3-658-45553-8ims. Despite the effort of many companies requiring their own mobile applications to capture images for online transactions, it is difficult to restrict users from taking a picture of other’s images displayed on a screen. To detect such cases, we propose a novel approach using paired images with dif
7#
發(fā)表于 2025-3-22 19:31:33 | 只看該作者
https://doi.org/10.1007/978-3-658-45553-8t via e.g. blurring, adding noise, or graying out, which often produce unrealistic, out-of-samples. Instead, we propose to integrate a generative inpainter into three representative attribution methods to remove an input feature. Our proposed change improved all three methods in (1) generating more
8#
發(fā)表于 2025-3-23 00:34:44 | 只看該作者
FinTech and Financial Inclusion,r sound modalities contribute to the result, i.e. do we need both image and sound for sound source localization? To address this question, we develop an unsupervised learning system that solves sound source localization by decomposing this task into two steps: (i) “potential sound source localizatio
9#
發(fā)表于 2025-3-23 04:38:11 | 只看該作者
10#
發(fā)表于 2025-3-23 07:23:49 | 只看該作者
https://doi.org/10.1007/978-3-031-24563-3nd 3D model-based methods proposed recently have their benefits and limitations. Whereas 3D model-based methods provide realistic deformations of the clothing, it needs a difficult 3D model construction process and cannot handle the non-clothing areas well. Image-based deep neural network methods ar
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都兰县| 绵阳市| 蕉岭县| 绥棱县| 前郭尔| 界首市| 团风县| 海南省| 内黄县| 诸城市| 扎赉特旗| 新疆| 偃师市| 义乌市| 永福县| 英吉沙县| 招远市| 文安县| 栖霞市| 凌海市| 兰溪市| 东乡| 禹城市| 海盐县| 邢台市| 纳雍县| 清涧县| 灌南县| 南平市| 肃宁县| 城市| 九江县| 马边| 连云港市| 岗巴县| 莱芜市| 西安市| 镇安县| 孟津县| 万山特区| 洞口县|