找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
查看: 30499|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:48:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ACCV 2020
副標(biāo)題15th Asian Conferenc
編輯Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi
視頻videohttp://file.papertrans.cn/235/234130/234130.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi
描述The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.*.The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; segmentation and grouping..Part II: low-level vision, image processing; motion and tracking..Part III: recognition and detection; optimization, statistical methods, and learning; robot vision.Part IV: deep learning for computer vision, generative models for computer vision..Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis..Part VI: applications of computer vision; vision for X; datasets and performance analysis..*The conference was held virtually..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; biomedical image analysis; computer networks; computer vision; image analysis; i
版次1
doihttps://doi.org/10.1007/978-3-030-69538-5
isbn_softcover978-3-030-69537-8
isbn_ebook978-3-030-69538-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Computer Vision – ACCV 2020影響因子(影響力)




書目名稱Computer Vision – ACCV 2020影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ACCV 2020網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ACCV 2020網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ACCV 2020被引頻次




書目名稱Computer Vision – ACCV 2020被引頻次學(xué)科排名




書目名稱Computer Vision – ACCV 2020年度引用




書目名稱Computer Vision – ACCV 2020年度引用學(xué)科排名




書目名稱Computer Vision – ACCV 2020讀者反饋




書目名稱Computer Vision – ACCV 2020讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:45:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:35:47 | 只看該作者
Introspective Learning by Distilling Knowledge from Online Self-explanatione created explanations to improve the learning process has been less explored. The explanations extracted from a model can be used to guide the learning process of the model itself. Another type of information used to guide the training of a model is the knowledge provided by a powerful teacher mode
地板
發(fā)表于 2025-3-22 06:00:47 | 只看該作者
Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarityring the nature of OOD samples, detection methods should not have hyperparameters that need to be tuned depending on incoming OOD samples. However, most recently proposed methods do not meet this requirement, leading to a compromised performance in real-world applications. In this paper, we propose
5#
發(fā)表于 2025-3-22 09:05:39 | 只看該作者
Meta-Learning with Context-Agnostic Initialisationsl properties within training data (which we refer to as context), not relevant to the target task, which act as a distractor to meta-learning, particularly when the target task contains examples from a novel context not seen during training..We address this oversight by incorporating a context-adver
6#
發(fā)表于 2025-3-22 14:17:08 | 只看該作者
Second Order Enhanced Multi-glimpse Attention in Visual Question Answeringion from both visual and textual modalities. Previous endeavours of VQA are made on the good attention mechanism, and multi-modal fusion strategies. For example, most models, till date, are proposed to fuse the multi-modal features based on implicit neural network through cross-modal interactions. T
7#
發(fā)表于 2025-3-22 19:54:33 | 只看該作者
Localize to Classify and Classify to Localize: Mutual Guidance in Object Detectionand ground truth boxes to evaluate the matching quality between anchors and objects. In this paper, we question this use of IoU and propose a new anchor matching criterion guided, during the training phase, by the optimization of both the localization and the classification tasks: the predictions re
8#
發(fā)表于 2025-3-22 21:46:29 | 只看該作者
9#
發(fā)表于 2025-3-23 01:51:14 | 只看該作者
10#
發(fā)表于 2025-3-23 09:17:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸西县| 绥阳县| 凤台县| 长子县| 项城市| 拉孜县| 南阳市| 碌曲县| 平山县| 龙泉市| 铜鼓县| 湖南省| 陆河县| 丰宁| 卓尼县| 乌恰县| 霍林郭勒市| 巴青县| 来凤县| 密云县| 龙川县| 林口县| 鱼台县| 东阳市| 松原市| 荃湾区| 宜阳县| 扎兰屯市| 旺苍县| 克山县| 尼玛县| 武邑县| 湖北省| 凤山市| 五华县| 鄂州市| 米脂县| 陇南市| 定州市| 武乡县| 隆化县|