找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 兇惡的老婦
41#
發(fā)表于 2025-3-28 18:17:58 | 只看該作者
End-to-End Model-Based Gait Recognition. In this paper, we propose an end-to-end model-based gait recognition method. Specifically, we employ a skinned multi-person linear (SMPL) model for human modeling, and estimate its parameters using a pre-trained human mesh recovery (HMR) network. As the pre-trained HMR is not recognition-oriented,
42#
發(fā)表于 2025-3-28 21:24:29 | 只看該作者
43#
發(fā)表于 2025-3-29 00:49:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:54:59 | 只看該作者
Backbone Based Feature Enhancement for Object Detectionection performance. However, almost all the architectures of feature pyramid are manually designed, which requires ad hoc design and prior knowledge. Meanwhile, existing methods focus on exploring more appropriate connections to generate features with strong semantics features from inherent pyramida
45#
發(fā)表于 2025-3-29 08:49:00 | 只看該作者
46#
發(fā)表于 2025-3-29 14:53:22 | 只看該作者
Any-Shot Object Detection real world scenarios, it is less practical to expect that ‘.’ the novel classes are either unseen or have few-examples. Here, we propose a more realistic setting termed ‘.’, where totally unseen and few-shot categories can simultaneously co-occur during inference. Any-shot detection offers unique c
47#
發(fā)表于 2025-3-29 18:25:45 | 只看該作者
Background Learnable Cascade for Zero-Shot Object Detectionemain several challenges for ZSD, including reducing the ambiguity between background and unseen objects as well as improving the alignment between visual and semantic concept. In this work, we propose a novel framework named Background Learnable Cascade (BLC) to improve ZSD performance. The major c
48#
發(fā)表于 2025-3-29 22:03:20 | 只看該作者
Unsupervised Domain Adaptive Object Detection Using Forward-Backward Cyclic Adaptationadversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment. However, aligning the marginal feature distributions does not guarantee the alignment of class conditional distributions. This limitation
49#
發(fā)表于 2025-3-30 02:59:51 | 只看該作者
50#
發(fā)表于 2025-3-30 04:51:36 | 只看該作者
Synthesizing the Unseen for Zero-Shot Object Detectionresponding semantics during inference. However, since the unseen objects are never visualized during training, the detection model is skewed towards seen content, thereby labeling unseen as background or a seen class. In this work, we propose to . visual features for unseen classes, so that the mode
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 11:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵州省| 台中县| 额济纳旗| 南充市| 全椒县| 濮阳县| 河北省| 锦州市| 乌兰察布市| 曲麻莱县| 南和县| 报价| 金平| 澜沧| 温宿县| 沅江市| 封丘县| 聊城市| 平乡县| 浦县| 安远县| 临西县| 偃师市| 麻栗坡县| 肇东市| 从江县| 虎林市| 白银市| 肥城市| 志丹县| 商都县| 永城市| 铜川市| 大名县| 黔东| 河北省| 广河县| 天津市| 密云县| 西和县| 建始县|