找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 太平間
31#
發(fā)表于 2025-3-27 00:37:19 | 只看該作者
0302-9743 , Japan, in November/ December 2020.*.The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; segmentation and grouping..Part II: low-level vision, i
32#
發(fā)表于 2025-3-27 01:32:21 | 只看該作者
33#
發(fā)表于 2025-3-27 07:10:50 | 只看該作者
https://doi.org/10.1007/978-3-319-26047-1iate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
34#
發(fā)表于 2025-3-27 11:28:23 | 只看該作者
Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention NetworkCAB). Several models of different sizes are released to meet various practical requirements. Extensive benchmark experiments show that the proposed models achieve better performance with much fewer multiply-adds and parameters (Source code is at .).
35#
發(fā)表于 2025-3-27 17:19:25 | 只看該作者
An Efficient Group Feature Fusion Residual Network for Image Super-Resolutioniate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
36#
發(fā)表于 2025-3-27 18:50:42 | 只看該作者
37#
發(fā)表于 2025-3-27 23:53:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:48:30 | 只看該作者
https://doi.org/10.1007/978-1-349-03555-7ith non-stationary textures remains a challenging task for computer vision. In this paper, a novel approach to image inpainting problem is presented, which adapts exemplar-based methods for deep convolutional neural networks. The concept of . is introduced with the purpose of preserving feature cont
39#
發(fā)表于 2025-3-28 07:38:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温宿县| 曲阜市| 河西区| 汽车| 施秉县| 永寿县| 忻州市| 阿合奇县| 永和县| 西平县| 顺义区| 湘潭县| 沂源县| 漾濞| 汕头市| 齐齐哈尔市| 凤庆县| 萨迦县| 华亭县| 松江区| 祁阳县| 屏东县| 常州市| 开平市| 思茅市| 寻甸| 乐亭县| 临高县| 左权县| 原平市| 乐安县| 郓城县| 天柱县| 广汉市| 开远市| 万盛区| 平原县| 宁津县| 金溪县| 福海县| 屏东市|