找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018 Workshops; 14th Asian Conferenc Gustavo Carneiro,Shaodi You Conference proceedings 2019 Springer Nature Switzer

[復(fù)制鏈接]
查看: 31166|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:39:15 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ACCV 2018 Workshops
副標(biāo)題14th Asian Conferenc
編輯Gustavo Carneiro,Shaodi You
視頻videohttp://file.papertrans.cn/235/234126/234126.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ACCV 2018 Workshops; 14th Asian Conferenc Gustavo Carneiro,Shaodi You Conference proceedings 2019 Springer Nature Switzer
描述This LNCS workshop proceedings, ACCV 2018, contains carefully reviewed and selected papers from 11 workshops, each having different types or programs: Scene Understanding and Modelling (SUMO) Challenge, Learning and Inference Methods for High Performance Imaging (LIMHPI), Attention/Intention Understanding (AIU), Museum Exhibit Identification Challenge (Open MIC) for Domain Adaptation and Few-Shot Learning, RGB-D - Sensing and Understanding via Combined Colour and Depth, Dense 3D Reconstruction for Dynamic Scenes, AI Aesthetics in Art and Media (AIAM), Robust Reading (IWRR), Artificial Intelligence for Retinal Image Analysis (AIRIA), Combining Vision and Language, Advanced Machine Vision for Real-life and Industrially Relevant Applications (AMV).
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; character recognition; computer architecture; computer vision; data security; es
版次1
doihttps://doi.org/10.1007/978-3-030-21074-8
isbn_softcover978-3-030-21073-1
isbn_ebook978-3-030-21074-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Computer Vision – ACCV 2018 Workshops影響因子(影響力)




書目名稱Computer Vision – ACCV 2018 Workshops影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ACCV 2018 Workshops網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ACCV 2018 Workshops網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ACCV 2018 Workshops被引頻次




書目名稱Computer Vision – ACCV 2018 Workshops被引頻次學(xué)科排名




書目名稱Computer Vision – ACCV 2018 Workshops年度引用




書目名稱Computer Vision – ACCV 2018 Workshops年度引用學(xué)科排名




書目名稱Computer Vision – ACCV 2018 Workshops讀者反饋




書目名稱Computer Vision – ACCV 2018 Workshops讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:43 | 只看該作者
Tatiana V. Nikulina,J. Patrick Kociolekdifficult to estimate the gaze of each person in a crowd accurately and simultaneously with existing image-based eye tracking methods, since the image resolution of each person becomes low when we capture the whole crowd with a distant camera. Therefore, we introduce a new approach for localizing th
板凳
發(fā)表于 2025-3-22 03:18:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:51:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:04:06 | 只看該作者
6#
發(fā)表于 2025-3-22 13:46:07 | 只看該作者
https://doi.org/10.1007/978-1-4684-0409-8eatures for recognition are appeared in the partial regions of human, thus we segment a video frame into spatial regions based on the human body parts to enhance feature representation. We utilize an object detector and a pose estimator to segment four regions, namely full body, left/right arm, and
7#
發(fā)表于 2025-3-22 19:57:43 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:58 | 只看該作者
https://doi.org/10.1007/978-1-349-03555-7sformation. Above all, a method called Style Transfer is drawing much attention which can integrate two photos into one integrated photo regarding their content and style. Although many extended works including Fast Style Transfer have been proposed so far, all the extended methods including origina
9#
發(fā)表于 2025-3-23 03:17:54 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:34 | 只看該作者
https://doi.org/10.1007/978-1-349-03555-7techniques for visual recognition have encouraged new possibilities for computing aesthetics and other related concepts in images. In this paper, we design an approach for recognizing styles in photographs by introducing adapted deep convolutional neural networks that are attentive towards strong ne
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扬中市| 五华县| 齐齐哈尔市| 霍林郭勒市| 萍乡市| 疏附县| 汾西县| 图们市| 安宁市| 津市市| 天水市| 齐齐哈尔市| 阿拉善右旗| 云梦县| 化德县| 龙陵县| 亳州市| 平塘县| 峡江县| 新沂市| 吉木乃县| 竹山县| 德昌县| 成都市| 铅山县| 醴陵市| 碌曲县| 内丘县| 万州区| 精河县| 长海县| 开江县| 邹城市| 建水县| 石柱| 尖扎县| 桑日县| 八宿县| 交城县| 海兴县| 霍城县|