找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C. V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Sw

[復(fù)制鏈接]
查看: 41886|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:29:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ACCV 2018
副標(biāo)題14th Asian Conferenc
編輯C. V. Jawahar,Hongdong Li,Konrad Schindler
視頻videohttp://file.papertrans.cn/235/234124/234124.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C. V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Sw
描述.The six volume set LNCS 11361-11366 constitutes the proceedings of the 14.th. Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; computer vision; estimation; image coding; image processing; image reconstructio
版次1
doihttps://doi.org/10.1007/978-3-030-20893-6
isbn_softcover978-3-030-20892-9
isbn_ebook978-3-030-20893-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Computer Vision – ACCV 2018影響因子(影響力)




書目名稱Computer Vision – ACCV 2018影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ACCV 2018網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ACCV 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ACCV 2018被引頻次




書目名稱Computer Vision – ACCV 2018被引頻次學(xué)科排名




書目名稱Computer Vision – ACCV 2018年度引用




書目名稱Computer Vision – ACCV 2018年度引用學(xué)科排名




書目名稱Computer Vision – ACCV 2018讀者反饋




書目名稱Computer Vision – ACCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:56:19 | 只看該作者
Zero-Shot Facial Expression Recognition with Multi-label Label Propagationmotional classes to describe the varied and nuancing meaning conveyed by facial expression. However, it is almost impossible to enumerate all the emotional categories and collect adequate annotated samples for each category. To this end, we propose a zero-shot learning framework with multi-label lab
板凳
發(fā)表于 2025-3-22 03:53:11 | 只看該作者
地板
發(fā)表于 2025-3-22 05:01:44 | 只看該作者
COSONet: Compact Second-Order Network for Video Face Recognitionpose, and also suffer from video-type noises such as motion blur, out-of-focus blur and low resolution. To tackle these two types of challenges, we propose an extensive framework which contains three aspects: neural network design, training data augmentation, and loss function. First, we devise an e
5#
發(fā)表于 2025-3-22 09:11:20 | 只看該作者
6#
發(fā)表于 2025-3-22 13:04:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:23:42 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:22 | 只看該作者
Understanding Individual Decisions of CNNs via Contrastive Backpropagationr understand individual decisions of deep convolutional neural networks. The saliency maps produced by them are proven to be non-discriminative. Recently, the Layer-wise Relevance Propagation (LRP) approach was proposed to explain the classification decisions of rectifier neural networks. In this wo
9#
發(fā)表于 2025-3-23 02:32:06 | 只看該作者
Say Yes to the Dress: Shape and Style Transfer Using Conditional GANsmage, while maintaining the image content and object shapes. In this paper we transfer both the shape and style of chosen objects between images, leaving the remaining areas unaltered. To tackle this problem, we propose a two stage method, where each stage contains a generative adversarial network,
10#
發(fā)表于 2025-3-23 06:46:05 | 只看該作者
Towards Multi-class Object Detection in Unconstrained Remote Sensing Imageryfic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and featur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 14:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 呼玛县| 西吉县| 神池县| 永春县| 宣武区| 平凉市| 海林市| 佳木斯市| 蒙阴县| 衡南县| 望城县| 抚远县| 托克逊县| 洪雅县| 神农架林区| 邢台县| 沁源县| 望谟县| 清远市| 伊金霍洛旗| 建宁县| 麻栗坡县| 太和县| 大渡口区| 张家口市| 汉寿县| 澜沧| 康马县| 朝阳县| 江安县| 日喀则市| 乌鲁木齐市| 南澳县| 特克斯县| 库尔勒市| 台湾省| 湛江市| 英德市| 洞头县| 柘荣县|