找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi

[復(fù)制鏈接]
查看: 44398|回復(fù): 66
樓主
發(fā)表于 2025-3-21 17:31:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Computer Vision – ACCV 2018
副標(biāo)題14th Asian Conferenc
編輯C.V. Jawahar,Hongdong Li,Konrad Schindler
視頻videohttp://file.papertrans.cn/235/234121/234121.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi
描述.The six volume set LNCS 11361-11366 constitutes the proceedings of the 14.th. Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; computer vision; estimation; face recognition; Human-Computer Interaction (HCI)
版次1
doihttps://doi.org/10.1007/978-3-030-20876-9
isbn_softcover978-3-030-20875-2
isbn_ebook978-3-030-20876-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Computer Vision – ACCV 2018影響因子(影響力)




書(shū)目名稱(chēng)Computer Vision – ACCV 2018影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ACCV 2018網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Computer Vision – ACCV 2018網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ACCV 2018被引頻次




書(shū)目名稱(chēng)Computer Vision – ACCV 2018被引頻次學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ACCV 2018年度引用




書(shū)目名稱(chēng)Computer Vision – ACCV 2018年度引用學(xué)科排名




書(shū)目名稱(chēng)Computer Vision – ACCV 2018讀者反饋




書(shū)目名稱(chēng)Computer Vision – ACCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:05 | 只看該作者
地板
發(fā)表于 2025-3-22 06:21:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:19:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:54:34 | 只看該作者
FSNet: An Identity-Aware Generative Model for Image-Based Face Swappingmorphable models (3DMMs), and facial textures are replaced between the estimated three-dimensional (3D) geometries in two images of different individuals. However, the estimation of 3D geometries along with different lighting conditions using 3DMMs is still a difficult task. We herein represent the
8#
發(fā)表于 2025-3-22 23:26:46 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:11 | 只看該作者
ScoringNet: Learning Key Fragment for Action Quality Assessment with Ranking Loss in Skilled Sportsting effective features and predicting reasonable scores for a long skilled sport video still beset researchers. In this paper, we introduce the ScoringNet, a novel network consisting of key fragment segmentation (KFS) and score prediction (SP), to address these two problems. To get the effective fe
10#
發(fā)表于 2025-3-23 08:19:09 | 只看該作者
Style Transfer with Adversarial Learning for Cross-Dataset Person Re-identificationingle dataset but fail to generalize well on another datasets. The emerging problem mainly comes from style difference between two datasets. To address this problem, we propose a novel style transfer framework based on Generative Adversarial Networks (GAN) to generate target-style images. Specifical
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
二连浩特市| 龙泉市| 镇沅| 城口县| 加查县| 长泰县| 大邑县| 元氏县| 扬中市| 分宜县| 项城市| 靖安县| 泗洪县| 耿马| 湖南省| 五常市| 湛江市| 临清市| 玉林市| 莱芜市| 浦北县| 兴隆县| 琼结县| 张家港市| 贵南县| 桂阳县| 遂昌县| 荔浦县| 太原市| 荥经县| 交城县| 中山市| 平罗县| 马鞍山市| 西昌市| 黑水县| 吴川市| 临高县| 乐清市| 桓台县| 来安县|