找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[復(fù)制鏈接]
查看: 15451|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:14:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision –ACCV 2016
副標(biāo)題13th Asian Conferenc
編輯Shang-Hong Lai,Vincent Lepetit,Yoichi Sato
視頻videohttp://file.papertrans.cn/235/234112/234112.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio
描述.The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016..The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision..
出版日期Conference proceedings 2017
關(guān)鍵詞3D vision; clustering; computer vision; image processing; neural networks; action recognition; computation
版次1
doihttps://doi.org/10.1007/978-3-319-54184-6
isbn_softcover978-3-319-54183-9
isbn_ebook978-3-319-54184-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Computer Vision –ACCV 2016影響因子(影響力)




書目名稱Computer Vision –ACCV 2016影響因子(影響力)學(xué)科排名




書目名稱Computer Vision –ACCV 2016網(wǎng)絡(luò)公開度




書目名稱Computer Vision –ACCV 2016網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision –ACCV 2016被引頻次




書目名稱Computer Vision –ACCV 2016被引頻次學(xué)科排名




書目名稱Computer Vision –ACCV 2016年度引用




書目名稱Computer Vision –ACCV 2016年度引用學(xué)科排名




書目名稱Computer Vision –ACCV 2016讀者反饋




書目名稱Computer Vision –ACCV 2016讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:43 | 只看該作者
Learning Action Concept Trees and Semantic Alignment Networks from Image-Description Dataequires tremendous manual work, which is hard to scale up. Besides, the action categories in such datasets are pre-defined and vocabularies are fixed. However humans may describe the same action with different phrases, which leads to the difficulty of vocabulary expansion for traditional fully-super
板凳
發(fā)表于 2025-3-22 02:32:13 | 只看該作者
地板
發(fā)表于 2025-3-22 06:21:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:07:59 | 只看該作者
Parametric Image Segmentation of Humans with Structural Shape Priorsgrounds, articulation, varying body proportions, partial views and viewpoint changes. In this work we propose class-specific segmentation models that leverage parametric max-flow image segmentation and a large dataset of human shapes. Our contributions are as follows: (1) formulation of a sub-modula
6#
發(fā)表于 2025-3-22 13:28:46 | 只看該作者
Lip Reading in the Wild trying to recognise a small number of utterances in controlled environments (. digits and alphabets), partially due to the shortage of suitable datasets..We make two novel contributions: first, we develop a pipeline for fully automated large-scale data collection from TV broadcasts. With this we ha
7#
發(fā)表于 2025-3-22 18:21:45 | 只看該作者
8#
發(fā)表于 2025-3-22 21:28:52 | 只看該作者
Continuous Supervised Descent Method for Facial Landmark Localisation to address this issue we propose a second order linear regression method that is both compact and robust against strong rotations. We provide a closed form solution, making the method fast to train. We test the method’s performance on two challenging datasets. The first has been intensely used by t
9#
發(fā)表于 2025-3-23 03:10:38 | 只看該作者
Modeling Stylized Character Expressions via Deep Learningcognize the expression of humans and stylized characters independently. Then we utilize a transfer learning technique to learn the mapping from humans to characters to create a shared embedding feature space. This embedding also allows human expression-based image retrieval and character expression-
10#
發(fā)表于 2025-3-23 07:58:42 | 只看該作者
Variational Gaussian Process Auto-Encoder for Ordinal Prediction of Facial Action Unitseling approach. In particular, we introduce GP . to project multiple observed features onto a latent space, while GP . are responsible for reconstructing the original features. Inference is performed in a novel variational framework, where the recovered latent representations are further constrained
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
突泉县| 夹江县| 应用必备| 灵川县| 惠州市| 通化县| 吉首市| 丰台区| 高清| 襄汾县| 高邑县| 新兴县| 康定县| 榆中县| 错那县| 麦盖提县| 三门县| 安义县| 抚顺市| 镶黄旗| 弥渡县| 凯里市| 上栗县| 历史| 华容县| 鹤壁市| 巴马| 临清市| 咸阳市| 大余县| 石棉县| 东至县| 八宿县| 桃源县| 扶风县| 银川市| 包头市| 资溪县| 泗水县| 岗巴县| 宣武区|