找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ACCV 2012; 11th Asian Conferenc Kyoung Mu Lee,Yasuyuki Matsushita,Zhanyi Hu Conference proceedings 2013 Springer-Verlag

[復制鏈接]
樓主: 無感覺
41#
發(fā)表于 2025-3-28 14:52:20 | 只看該作者
42#
發(fā)表于 2025-3-28 20:42:19 | 只看該作者
Adaptive Integration of Feature Matches into Variational Optical Flow Methods still poses a severe problem for many algorithms. In particular if the motion exceeds the size of an object, standard coarse-to-fine estimation schemes fail to produce meaningful results. While the integration of point correspondences may help to overcome this limitation, such strategies often dete
43#
發(fā)表于 2025-3-29 01:34:52 | 只看該作者
Efficient Learning of Linear Predictors Using Dimensionality Reductionmits their use in applications where the scene is not known a priori and multiple templates have to be added online, such as SLAM or SfM. This especially holds for applications running on low-end hardware such as mobile devices. Previous approaches either had to learn Linear Predictors offline [1],
44#
發(fā)表于 2025-3-29 04:15:00 | 只看該作者
Robust Visual Tracking Using Dynamic Classifier Selection with Sparse Representation of Label Noiselassifier online using the samples generated by the tracker to handle the appearance changes. However, the self-updating scheme makes these methods suffer from drifting problem because of the incorrect labels of weak classifiers in training samples. In this paper, we split the class labels into true
45#
發(fā)表于 2025-3-29 08:11:26 | 只看該作者
46#
發(fā)表于 2025-3-29 12:45:01 | 只看該作者
47#
發(fā)表于 2025-3-29 19:10:47 | 只看該作者
48#
發(fā)表于 2025-3-29 21:41:07 | 只看該作者
49#
發(fā)表于 2025-3-30 02:26:13 | 只看該作者
An Anchor Patch Based Optimization Framework for Reducing Optical Flow Drift in Long Image Sequences pairs over time where error accumulation in tracking can result in .. In this paper, we propose an optimization framework that utilises a novel Anchor Patch algorithm which significantly reduces overall tracking errors given long sequences containing highly deformable objects. The framework may be
50#
發(fā)表于 2025-3-30 05:53:29 | 只看該作者
One-Class Multiple Instance Learning and Applications to Target Trackingbags are available. In this work, we propose the first analysis of the one-class version of MIL problem where one is only provided input data in the form of positive bags. We also propose an SVM-based formulation to solve this problem setting. To make the approach computationally tractable we furthe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
屯门区| 罗山县| 乌拉特后旗| 波密县| 长治市| 锡林郭勒盟| 德庆县| 抚松县| 平武县| 湄潭县| 山阴县| 顺昌县| 绿春县| 定结县| 哈密市| 敦化市| 昌乐县| 云和县| 无锡市| 汝州市| 宁城县| 左云县| 沧源| 洛浦县| 合山市| 开远市| 贺兰县| 上林县| 松溪县| 广河县| 丹棱县| 郧西县| 新巴尔虎左旗| 北辰区| 枣庄市| 甘谷县| 始兴县| 潍坊市| 灵山县| 青川县| 成都市|