找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ACCV 2007; 8th Asian Conference Yasushi Yagi,Sing Bing Kang,Hongbin Zha Conference proceedings 2007 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 惡化
11#
發(fā)表于 2025-3-23 12:47:31 | 只看該作者
12#
發(fā)表于 2025-3-23 17:53:33 | 只看該作者
Sports Classification Using Cross-Ratio Histogramse proposed approach uses invariant nature of a cross-ratio under projective transformation to develop a robust classifier. For a given image, cross-ratios are computed for the points obtained from the intersection of lines detected using Hough transform. These cross-ratios are represented by a histo
13#
發(fā)表于 2025-3-23 20:41:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:00:32 | 只看該作者
Efficient Graph Cuts for Multiclass Interactive Image Segmentation segmentation is foreground/background segmentation based on user specified brush labellings. The problem can be formulated within the binary Markov Random Field (MRF) framework which can be solved efficiently via graph cut [1]. However, no attempt has yet been made to handle segmentation of multipl
15#
發(fā)表于 2025-3-24 04:47:23 | 只看該作者
Feature Subset Selection for Multi-class SVM Based Image Classificationselection criterion for the multi-class SVMs. By minimizing this criterion, the scale factors assigned to each feature in a kernel function are optimized to identify the important features. This minimization problem can be efficiently solved by gradient-based search techniques, even if hundreds of f
16#
發(fā)表于 2025-3-24 08:53:10 | 只看該作者
Evaluating Multi-class Multiple-Instance Learning for Image Categorization. Typical current MIL schemes rely on binary one-versus-all classification, even for inherently multi-class problems. There are a few drawbacks with binary MIL when applied to a multi-class classification problem. This paper describes Multi-class Multiple-Instance Learning (McMIL) to image categoriz
17#
發(fā)表于 2025-3-24 12:12:19 | 只看該作者
TransforMesh : A Topology-Adaptive Mesh-Based Approach to Surface Evolutionmetrization, while allowing for an accurate surface representation, suffers from the inherent problems of not being able to reliably deal with self-intersections and topology changes. As a consequence, an important number of methods choose implicit representations of surfaces, e.g. level set methods
18#
發(fā)表于 2025-3-24 17:30:28 | 只看該作者
19#
發(fā)表于 2025-3-24 19:43:47 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稻城县| 新乐市| 夹江县| 康乐县| 桃园市| 西乌珠穆沁旗| 城口县| 安徽省| 清丰县| 奉节县| 东兴市| 金坛市| 关岭| 道真| 集贤县| 甘孜| 新丰县| 延庆县| 德阳市| 睢宁县| 秭归县| 霍州市| 宁强县| 高邮市| 甘孜县| 抚顺县| 筠连县| 洞头县| 宜州市| 治多县| 永安市| 巴塘县| 陆良县| 新巴尔虎右旗| 富平县| 河东区| 墨竹工卡县| 浦县| 安阳市| 兴安县| 庆城县|