找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 7th International Co Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar Conference proceedings 2023 The Edito

[復(fù)制鏈接]
樓主: supplementary
11#
發(fā)表于 2025-3-23 13:35:05 | 只看該作者
12#
發(fā)表于 2025-3-23 16:26:26 | 只看該作者
Rain Streak Removal via Spatio-Channel Based Spectral Graph CNN for Image Deraining,g deraining methods ignores long range contextual information and utilize only local spatial information. To address this issue, a Spatio-channel based Spectral Graph Convolutional Neural Network (SCSGCNet) for image deraining was proposed and two new modules were introduced to extract representatio
13#
發(fā)表于 2025-3-23 20:44:37 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:23 | 只看該作者
15#
發(fā)表于 2025-3-24 04:16:39 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:16 | 只看該作者
17#
發(fā)表于 2025-3-24 11:45:54 | 只看該作者
A Curated Dataset for Spinach Species Identification,es because of the structure similarity of many plant species. So, automated spinach recognition will support the people community to a greater extent. In this study, we present spinach dataset, a freely accessible annotated collection of images of spinach leaves in Indian scenario. We propose three
18#
發(fā)表于 2025-3-24 17:38:19 | 只看該作者
19#
發(fā)表于 2025-3-24 20:34:14 | 只看該作者
,Computing Digital Signature by?Transforming 2D Image to?3D: A Geometric Perspective,o various 3D reconstruction techniques using neural nets, with the majority of approaches producing high-quality results and efficiency. This paper presents an approach to convert 2D facial images to 3D and then use the 3D data and features to construct a unique digital signature. The proposed solut
20#
發(fā)表于 2025-3-25 01:14:26 | 只看該作者
A Curated Dataset for Spinach Species Identification,different custom designed convolutional neural networks (CNN) and compare the performance of the same. Also we apply the transfer learning approach using MobileNetV2 pretrained model for this spinach species recognition. Using transfer learning approach we got an accuracy of 92.96%.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 19:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南汇区| 沙洋县| 陆河县| 台安县| 鄂托克旗| 梅州市| 东乌| 永丰县| 石屏县| 吴川市| 宾川县| 泽州县| 景谷| 江达县| 榕江县| 咸阳市| 库尔勒市| 稷山县| 新余市| 定陶县| 慈利县| 祥云县| 逊克县| 海林市| 潢川县| 寻乌县| 朔州市| 许昌市| 米泉市| 忻城县| 会昌县| 富民县| 清水县| 泰和县| 广水市| 瓮安县| 铁岭市| 子洲县| 荃湾区| 洪湖市| 铜梁县|