找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 5th International Co Satish Kumar Singh,Partha Roy,P. Nagabhushan Conference proceedings 2021 The Edi

[復(fù)制鏈接]
樓主: Alacrity
11#
發(fā)表于 2025-3-23 12:05:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:00 | 只看該作者
13#
發(fā)表于 2025-3-23 20:00:08 | 只看該作者
The Definitive Guide to MongoDB; a) skeleton videos and angles of skeleton bones as features, b) The HOG features from the RGB frames. In both approaches, we train SVMs and recognize the KPs using them. The classifier generated by SVM predicts the sequence of KPs involved in a given .. Since KPs are the string-like encoding symbo
14#
發(fā)表于 2025-3-24 00:04:51 | 只看該作者
The Definitive Guide to MongoDBed to detect presence of animals, and the ResNet50 model, trained using Triplet Loss, is used for animal re-identification. The prototype is tested using three animal species, and achieves detection accuracy of 80%, 89.47% and 92.56%, and re-identification accuracy of 99.6%, 86.2% and 61.7% respecti
15#
發(fā)表于 2025-3-24 06:04:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:21:07 | 只看該作者
17#
發(fā)表于 2025-3-24 13:10:04 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:25 | 只看該作者
Deep over and Under Exposed Region Detection, architecture and re-trained it on our custom dataset. To the best of our knowledge, this is the first attempt to use semantic segmentation and transfer learning methods to identify these regions in an end-to-end fashion. We obtain a Dice score and a Jaccard score of 0.93 and 0.86, respectively, whi
19#
發(fā)表于 2025-3-24 22:28:08 | 只看該作者
,DeepHDR-GIF: Capturing Motion in?High Dynamic Range Scenes,es and produced three in-between frames in a binary-search manner. At last, generated HDR frames and interpolated frames are merged in?to a GIF image, which depicts the motion in the scene without losing out on the dynamic range of the scene. The proposed framework works on different types of dynami
20#
發(fā)表于 2025-3-25 02:32:26 | 只看該作者
Hard-Mining Loss Based Convolutional Neural Network for Face Recognition,d concept is generic and can be used with any existing loss function. We test the Hard-Mining loss with different losses such as Cross-Entropy, Angular-Softmax and ArcFace. The proposed Hard-Mining loss is tested over widely used Labeled Faces in the Wild (LFW) and YouTube Faces (YTF) datasets. The
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 01:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永川市| 铁岭县| 健康| 隆化县| 改则县| 黄平县| 景德镇市| 宜宾市| 靖远县| 弥勒县| 平武县| 曲沃县| 安阳市| 庆元县| 彩票| 乌兰察布市| 仪陇县| 双牌县| 专栏| 蒙阴县| 黑龙江省| 吉林市| 时尚| 湟源县| 界首市| 梁河县| 亚东县| 徐汇区| 竹山县| 岫岩| 天台县| 合阳县| 新建县| 潼关县| 盐池县| 黄冈市| 绥宁县| 洛南县| 九龙城区| 得荣县| 宕昌县|