找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 5th International Co Satish Kumar Singh,Partha Roy,P. Nagabhushan Conference proceedings 2021 The Edi

[復制鏈接]
樓主: Alacrity
11#
發(fā)表于 2025-3-23 12:05:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:00 | 只看該作者
13#
發(fā)表于 2025-3-23 20:00:08 | 只看該作者
The Definitive Guide to MongoDB; a) skeleton videos and angles of skeleton bones as features, b) The HOG features from the RGB frames. In both approaches, we train SVMs and recognize the KPs using them. The classifier generated by SVM predicts the sequence of KPs involved in a given .. Since KPs are the string-like encoding symbo
14#
發(fā)表于 2025-3-24 00:04:51 | 只看該作者
The Definitive Guide to MongoDBed to detect presence of animals, and the ResNet50 model, trained using Triplet Loss, is used for animal re-identification. The prototype is tested using three animal species, and achieves detection accuracy of 80%, 89.47% and 92.56%, and re-identification accuracy of 99.6%, 86.2% and 61.7% respecti
15#
發(fā)表于 2025-3-24 06:04:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:21:07 | 只看該作者
17#
發(fā)表于 2025-3-24 13:10:04 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:25 | 只看該作者
Deep over and Under Exposed Region Detection, architecture and re-trained it on our custom dataset. To the best of our knowledge, this is the first attempt to use semantic segmentation and transfer learning methods to identify these regions in an end-to-end fashion. We obtain a Dice score and a Jaccard score of 0.93 and 0.86, respectively, whi
19#
發(fā)表于 2025-3-24 22:28:08 | 只看該作者
,DeepHDR-GIF: Capturing Motion in?High Dynamic Range Scenes,es and produced three in-between frames in a binary-search manner. At last, generated HDR frames and interpolated frames are merged in?to a GIF image, which depicts the motion in the scene without losing out on the dynamic range of the scene. The proposed framework works on different types of dynami
20#
發(fā)表于 2025-3-25 02:32:26 | 只看該作者
Hard-Mining Loss Based Convolutional Neural Network for Face Recognition,d concept is generic and can be used with any existing loss function. We test the Hard-Mining loss with different losses such as Cross-Entropy, Angular-Softmax and ArcFace. The proposed Hard-Mining loss is tested over widely used Labeled Faces in the Wild (LFW) and YouTube Faces (YTF) datasets. The
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-27 07:16
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大邑县| 泽普县| 黄龙县| 安平县| 大石桥市| 荣成市| 资讯 | 仙居县| 五台县| 吴忠市| 湖南省| 昆山市| 柯坪县| 大悟县| 合肥市| 牙克石市| 玛曲县| 玉山县| 贵德县| 金乡县| 东丰县| 宁南县| 临沂市| 东莞市| 永福县| 阳信县| 新竹县| 明光市| 汉中市| 山西省| 平定县| 泗洪县| 新邵县| 阿克苏市| 通许县| 张家口市| 金溪县| 贵定县| 富阳市| 中阳县| 龙海市|