找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Graphics; International Confer Leszek J. Chmielewski,Ryszard Kozera,Arkadiusz Or? Conference proceedings 2020 Springer

[復(fù)制鏈接]
樓主: Magnanimous
21#
發(fā)表于 2025-3-25 03:54:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:43:35 | 只看該作者
Depth Perception Tendencies in the 3-D Environment of Virtual Reality,he virtual reality with 37 participants observing artificial scenes designed for exploring trends in the depth perception in the virtual 3-D environment. We analyzed the acquired data and discuss the revealed depth perception tendencies in virtual reality alongside future possible applications.
23#
發(fā)表于 2025-3-25 13:15:15 | 只看該作者
Optimisation of a Siamese Neural Network for Real-Time Energy Efficient Object Tracking,ed results indicate that using quantisation can significantly reduce the memory and computational complexity of the proposed network while still enabling precise tracking, thus allow to use it in embedded vision systems. Moreover, quantisation of weights positively affects the network training by de
24#
發(fā)表于 2025-3-25 15:56:31 | 只看該作者
25#
發(fā)表于 2025-3-25 20:13:45 | 只看該作者
26#
發(fā)表于 2025-3-26 01:19:23 | 只看該作者
,Performance Evaluation of Selected 3D Keypoint Detector–Descriptor Combinations,nes. Our tests show that choosing the right detector impacts the descriptor’s performance in the recognition process. The repeatability tests of the detectors show that the data which contained occlusions have a high impact on their performance. We summarized the results into graphs and described th
27#
發(fā)表于 2025-3-26 06:01:44 | 只看該作者
The Definitive Guide to Building Java Robotsthe AlexNet Convolutional Neural Network (CNN) architecture, which underwent data capturing, data augmentation that includes rescaling and shear zoom followed by feature extraction and classification using AlexNet. The AlexNet architecture performed exceptionally well, producing a model accuracy of
28#
發(fā)表于 2025-3-26 12:22:28 | 只看該作者
The Definitive Guide to Catalystures associated with tuberculosis and make corresponding accurate predictions. Our model achieved 87.8% accuracy in classifying chest X-ray into abnormal and normal classes and validated against the ground-truth. Our model expresses a promising pathway in solving the diagnosis issue in early detecti
29#
發(fā)表于 2025-3-26 13:24:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:53:50 | 只看該作者
The Definitive Guide to Catalysted results indicate that using quantisation can significantly reduce the memory and computational complexity of the proposed network while still enabling precise tracking, thus allow to use it in embedded vision systems. Moreover, quantisation of weights positively affects the network training by de
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉安市| 轮台县| 惠东县| 寿阳县| 南昌市| 共和县| 临海市| 马鞍山市| 广丰县| 安塞县| 旅游| 长葛市| 新营市| 平南县| 略阳县| 津南区| 西安市| 天水市| 肥乡县| 唐海县| 黔西| 岑巩县| 和平县| 绍兴市| 广宁县| 轮台县| 会理县| 大竹县| 乌鲁木齐县| 亳州市| 民和| 赤城县| 赤城县| 大理市| 运城市| 巫山县| 昌图县| 阳春市| 玛曲县| 黑山县| 阜平县|