找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ACCV 2014; 12th Asian Conferenc Daniel Cremers,Ian Reid,Ming-Hsuan Yang Conference proceedings 2015 Springer Internation

[復(fù)制鏈接]
樓主: DUCT
21#
發(fā)表于 2025-3-25 06:20:59 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:44 | 只看該作者
23#
發(fā)表于 2025-3-25 12:41:25 | 只看該作者
Visual Tracking via Supervised Similarity Matching main engine for target detection. In addition, our method applies a Support Vector Machine (SVM) based supervised classifier cooperating with the unsupervised detector. Both the proposed tracker and several selected trackers are tested on some well accepted challenging videos; and the experimental
24#
發(fā)表于 2025-3-25 19:34:35 | 只看該作者
Robust Online Visual Tracking with a Single Convolutional Neural Networkhin different time periods. Finally, we propose to update the CNN model in a “l(fā)azy” style to speed-up the training stage, where the network is updated only when a significant appearance change occurs on the object, without sacrificing tracking accuracy. The CNN tracker outperforms all compared state
25#
發(fā)表于 2025-3-25 23:23:48 | 只看該作者
26#
發(fā)表于 2025-3-26 00:40:13 | 只看該作者
Enhanced Sequence Matching for Action Recognition from 3D Skeletal Data and MSRC-12 gesture dataset and achieves comparable performance to the state-of-the-art on MSR action 3D dataset. Moreover, experimental results show that our method is very intuitive and robust to noise and temporal variation.
27#
發(fā)表于 2025-3-26 07:46:40 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:16 | 只看該作者
Fast Inference of Contaminated Data for Real Time Object Tracking updating observation model, we adopt on an online robust PCA during the update of observation model. Our qualitative and quantitative evaluations on challenging dataset demonstrate that the proposed scheme is competitive to several sophisticated state of the art methods, and it is much faster.
29#
發(fā)表于 2025-3-26 13:22:50 | 只看該作者
The Czech Language in the Digital Ageon of networks with different depth is used to improve the training efficiency and all the convolutional operations and parameters updating are based on the efficient GPU implementation. The experimental results applied to some widely used benchmark outperform the state of the art methods.
30#
發(fā)表于 2025-3-26 18:27:43 | 只看該作者
The Czech and Slovak Experienceo background change which typically occurs in real-world setting. We conduct extensive experiments on several publicly available datasets for anomaly detection, and the results show that our approach can outperform state-of-the-art approaches, which verifies the effectiveness of our approach.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广西| 德州市| 界首市| 奉节县| 错那县| 乐至县| 泾源县| 卫辉市| 米林县| 盘锦市| 长阳| 石景山区| 阿拉善左旗| 遵义县| 恩平市| 岳阳县| 酒泉市| 普兰店市| 错那县| 且末县| 喀喇沁旗| 团风县| 教育| 闸北区| 嘉义市| 博爱县| 米脂县| 正定县| 泗阳县| 阳朔县| 石首市| 望奎县| 锡林浩特市| 江城| 城固县| 苗栗县| 郁南县| 黄冈市| 沂南县| 越西县| 邻水|