找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ACCV 2014; 12th Asian Conferenc Daniel Cremers,Ian Reid,Ming-Hsuan Yang Conference proceedings 2015 Springer Internation

[復(fù)制鏈接]
樓主: 珍珠無
41#
發(fā)表于 2025-3-28 16:33:24 | 只看該作者
Introduction to Cytochemical Bioassay,f foreground detection and the computation time as well. Moreover, solving MRF with graph-cuts exploits structural information using spatial neighborhood system and similarities to further improve the foreground segmentation in highly dynamic backgrounds. Experimental results on challenging datasets
42#
發(fā)表于 2025-3-28 20:18:54 | 只看該作者
43#
發(fā)表于 2025-3-28 22:57:47 | 只看該作者
44#
發(fā)表于 2025-3-29 03:05:17 | 只看該作者
Local Generic Representation for Face Recognition with Single Sample per Person,ations of a query sample by the gallery samples. Considering the fact that different parts of human faces have different importance to face recognition, and the fact that the intra-class facial variations can be shared across different subjects, we propose a local generic representation (LGR) based
45#
發(fā)表于 2025-3-29 09:39:43 | 只看該作者
Unsupervised Image Co-segmentation Based on Cooperative Game,ation algorithms have the assumptions that the common objects are singletons or with the similar size. In addition, they might assume that the background features are simple or discriminative. This paper presents a cooperative co-segmentation without these assumptions. In the proposed cooperative co
46#
發(fā)表于 2025-3-29 11:44:37 | 只看該作者
47#
發(fā)表于 2025-3-29 18:29:59 | 只看該作者
Real-Time Head Orientation from a Monocular Camera Using Deep Neural Network,and we exploit the architecture in a data regression manner to learn the mapping function between visual appearance and three dimensional head orientation angles. Therefore, in contrast to classification based approaches, our system outputs continuous head orientation. The algorithm uses convolution
48#
發(fā)表于 2025-3-29 20:41:51 | 只看該作者
49#
發(fā)表于 2025-3-30 00:31:15 | 只看該作者
Visual Salience Learning via Low Rank Matrix Recovery,ehave differently over an individual image, and these saliency detection results often complement each other. To make full use of the advantages of the existing saliency detection methods, in this paper, we propose a salience learning model which combines various saliency detection methods such that
50#
發(fā)表于 2025-3-30 04:34:36 | 只看該作者
A New Framework for Multiclass Classification Using Multiview Assisted Adaptive Boosting,classifiers on each view and finally conglomerate them using weighted summation. Such approaches are void from inter-view communications and thus do not guarantee to yield the best possible ensemble classifier on the given sample-view space. This paper proposes a new algorithm for multiclass classif
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康保县| 犍为县| 淮安市| 土默特右旗| 北海市| 安徽省| 苍山县| 湛江市| 永嘉县| 卫辉市| 天门市| 伽师县| 东辽县| 衡东县| 宁安市| 樟树市| 普安县| 尼玛县| 微博| 开鲁县| 赞皇县| 奉新县| 漳浦县| 凤阳县| 正宁县| 利津县| 惠州市| 临西县| 龙陵县| 东明县| 渝北区| 连山| 奉新县| 临澧县| 耒阳市| 乌什县| 盘山县| 栾川县| 沁源县| 通渭县| 平昌县|