找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ECCV 2014 Workshops; Zurich, Switzerland, Lourdes Agapito,Michael M. Bronstein,Carsten Rothe Conference proceedings 2015

[復(fù)制鏈接]
樓主: 動(dòng)詞
21#
發(fā)表于 2025-3-25 04:56:25 | 只看該作者
22#
發(fā)表于 2025-3-25 10:23:03 | 只看該作者
https://doi.org/10.1057/9781137464354ystem without having to implement a Pedestrian Detector algorithm yourself. We also provide body-part detection data on top of the manually labeled data and the Pedestrian Detection data, such as to make it trivial to extract your features from relevant local regions (actual body-parts). Finally we
23#
發(fā)表于 2025-3-25 13:37:59 | 只看該作者
24#
發(fā)表于 2025-3-25 17:55:05 | 只看該作者
Multi-Modal Distance Metric Learning: ABayesian Non-parametric Approachthe flexible Beta process model, we can infer the dimensionality of the hidden space using training data itself. We also develop a novel Variational Bayes (VB) algorithm to compute the posterior distribution of the parameters that imposes the constraints (similarity/dissimilarity constraints) direct
25#
發(fā)表于 2025-3-25 23:52:22 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:06 | 只看該作者
Learning Skeleton Stream Patterns with Slow Feature Analysis for Action Recognitionms. Then, Slow Feature Analysis is applied to learn the visual pattern of each joint, and the high-level information in the learnt general patterns is encoded into each skeleton to reduce the intra-variance of the skeletons. Temporal pyramid of posture word histograms is used to describe the global
27#
發(fā)表于 2025-3-26 04:19:40 | 只看該作者
The HDA+ Data Set for Research on Fully Automated Re-identification Systemsystem without having to implement a Pedestrian Detector algorithm yourself. We also provide body-part detection data on top of the manually labeled data and the Pedestrian Detection data, such as to make it trivial to extract your features from relevant local regions (actual body-parts). Finally we
28#
發(fā)表于 2025-3-26 10:34:27 | 只看該作者
Computer Vision - ECCV 2014 Workshops978-3-319-16199-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
29#
發(fā)表于 2025-3-26 13:34:30 | 只看該作者
30#
發(fā)表于 2025-3-26 16:51:52 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/234010.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶州市| 河西区| 蓝山县| 云梦县| 临朐县| 东安县| 通山县| 建湖县| 磐石市| 富宁县| 大埔县| 安多县| 东源县| 当涂县| 灵台县| 图木舒克市| 屯留县| 上犹县| 巴里| 长沙市| 剑河县| 北宁市| 靖宇县| 凤冈县| 灵山县| 项城市| 沙坪坝区| 肃南| 隆德县| 密云县| 镶黄旗| 上犹县| 靖西县| 九寨沟县| 高唐县| 沙坪坝区| 湘乡市| 四会市| 清河县| 关岭| 陵川县|