找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ECCV 2004; 8th European Confere Tomá? Pajdla,Ji?í Matas Conference proceedings 2004 Springer-Verlag Berlin Heidelberg 200

[復(fù)制鏈接]
樓主: INFER
51#
發(fā)表于 2025-3-30 11:11:31 | 只看該作者
Robust Fitting by Adaptive-Scale Residual Consensus parameters of a model, and ii) differentiate inliers from outliers. We propose a new estimator called Adaptive-Scale Residual Consensus (ASRC). ASRC scores a model based on both the residuals of inliers and the corresponding scale estimate determined by those inliers. ASRC is very robust to multipl
52#
發(fā)表于 2025-3-30 15:31:14 | 只看該作者
53#
發(fā)表于 2025-3-30 20:25:10 | 只看該作者
An Adaptive Window Approach for Image Smoothing and Structures Preservingant modeling of the image with an adaptive choice of a window around each pixel. The adaptive smoothing technique associates with each pixel the weighted sum of data points within the window. We describe a statistical method for choosing the optimal window size, in a manner that varies at each pixel
54#
發(fā)表于 2025-3-30 23:39:00 | 只看該作者
55#
發(fā)表于 2025-3-31 01:28:25 | 只看該作者
Are Iterations and Curvature Useful for Tensor Voting? on tensor voting are presented. First the use of iterations is investigated, and second, a new method for integrating curvature information is evaluated. In opposition to other grouping methods, tensor voting claims the advantage to be non-iterative. Although non-iterative tensor voting methods pro
56#
發(fā)表于 2025-3-31 06:30:17 | 只看該作者
57#
發(fā)表于 2025-3-31 11:38:14 | 只看該作者
58#
發(fā)表于 2025-3-31 16:27:27 | 只看該作者
Shape Matching and Recognition – Using Generative Models and Informative Featurese model allows for a class of transformations, such as affine and non-rigid transformations, and induces a similarity measure between shapes. The matching process is formulated in the EM algorithm. To have a fast algorithm and avoid local minima, we show how the EM algorithm can be approximated by u
59#
發(fā)表于 2025-3-31 20:25:27 | 只看該作者
60#
發(fā)表于 2025-3-31 22:04:58 | 只看該作者
Recognizing Objects in Range Data Using Regional Point Descriptors successful in past research is the regional shape descriptor. In this paper, we introduce two new regional shape descriptors: 3D shape contexts and harmonic shape contexts. We evaluate the performance of these descriptors on the task of recognizing vehicles in range scans of scenes using a database
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡南县| 开封市| 新闻| 类乌齐县| 萝北县| 普洱| 温州市| 宣威市| 淳安县| 和平区| 竹北市| 忻州市| 海门市| 德化县| 孟津县| 根河市| 廊坊市| 同仁县| 来宾市| 承德市| 昂仁县| 衡东县| 富蕴县| 老河口市| 瑞昌市| 普兰县| 长治市| 曲阜市| 大厂| 台中县| 沿河| 大安市| 新丰县| 白朗县| 松潘县| 永善县| 澜沧| 丰都县| 南充市| 青河县| 吴堡县|