找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ACCV 2014 Workshops; Singapore, Singapore C. V. Jawahar,Shiguang Shan Conference proceedings 2015 Springer International

[復(fù)制鏈接]
樓主: 變更
51#
發(fā)表于 2025-3-30 11:10:18 | 只看該作者
Feature Learning for the Image Retrieval Taskistance to the assigned codeword before aggregating them as part of the encoding process. Using the VLAD feature encoder, we show experimentally that our proposed optimized power normalization method and local descriptor weighting method yield improvements on a standard dataset.
52#
發(fā)表于 2025-3-30 13:19:27 | 只看該作者
Conference proceedings 2015nction with the 12th Asian Conference on Computer Vision, ACCV 2014, in Singapore, in November 2014. The 153 full papers presented were selected from numerous submissions. LNCS 9008 contains the papers selected for the Workshop on Human Gait and Action Analysis in the Wild, the Second International
53#
發(fā)表于 2025-3-30 19:09:05 | 只看該作者
54#
發(fā)表于 2025-3-30 21:26:04 | 只看該作者
Christian Humanism and the Jewsfalse identification of tumors. For tumor classification, we used GLCM based textural features. A sliding window is used to search over the lung parenchyma region and extract the features. Chi-Square distance measure is used to classify the tumor. The performance of GLCM features for tumor classification is evaluated with the histogram features.
55#
發(fā)表于 2025-3-31 01:06:40 | 只看該作者
https://doi.org/10.1007/978-3-030-27025-4ns in the metric tensor. The categorization of 3D objects is carried out using polynomial kernel SVM classifier. The effectiveness of the proposed framework is demonstrated on 3D objects obtained from different datasets and achieved comparable results.
56#
發(fā)表于 2025-3-31 06:59:37 | 只看該作者
57#
發(fā)表于 2025-3-31 10:38:00 | 只看該作者
58#
發(fā)表于 2025-3-31 16:05:06 | 只看該作者
59#
發(fā)表于 2025-3-31 19:23:25 | 只看該作者
60#
發(fā)表于 2025-4-1 01:44:04 | 只看該作者
Metric Tensor and Christoffel Symbols Based 3D Object Categorizationns in the metric tensor. The categorization of 3D objects is carried out using polynomial kernel SVM classifier. The effectiveness of the proposed framework is demonstrated on 3D objects obtained from different datasets and achieved comparable results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾源县| 眉山市| 忻州市| 镇平县| 岳西县| 井冈山市| 时尚| 昭苏县| 梨树县| 外汇| 唐河县| 定兴县| 铜梁县| 台州市| 德钦县| 沂源县| 堆龙德庆县| 石嘴山市| 平江县| 多伦县| 修武县| 甘肃省| 淮安市| 天柱县| 沙洋县| 汾阳市| 阿鲁科尔沁旗| 宽城| 搜索| 东海县| 郯城县| 墨脱县| 奇台县| 岑巩县| 靖安县| 临沭县| 诸暨市| 镇江市| 余江县| 菏泽市| 巢湖市|