找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science – Theory and Applications; 16th International C Rahul Santhanam,Daniil Musatov Conference proceedings 2021 Springer Nature

[復(fù)制鏈接]
查看: 50967|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:58:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Science – Theory and Applications
副標(biāo)題16th International C
編輯Rahul Santhanam,Daniil Musatov
視頻videohttp://file.papertrans.cn/234/233821/233821.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Science – Theory and Applications; 16th International C Rahul Santhanam,Daniil Musatov Conference proceedings 2021 Springer Nature
描述.This book constitutes the proceedings of the 16th International Computer Science Symposium in Russia, CSR 2021, held in Sochi, Russia, in June/July 2021...The 28 full papers were carefully reviewed and selected from 68 submissions. The papers cover a broad range of topics, such as formal languages and automata theory, geometry and discrete structures; theory and algorithms for application domains and much more. .
出版日期Conference proceedings 2021
關(guān)鍵詞approximation theory; artificial intelligence; communication; computer hardware; computer networks; compu
版次1
doihttps://doi.org/10.1007/978-3-030-79416-3
isbn_softcover978-3-030-79415-6
isbn_ebook978-3-030-79416-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Computer Science – Theory and Applications影響因子(影響力)




書目名稱Computer Science – Theory and Applications影響因子(影響力)學(xué)科排名




書目名稱Computer Science – Theory and Applications網(wǎng)絡(luò)公開度




書目名稱Computer Science – Theory and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Science – Theory and Applications被引頻次




書目名稱Computer Science – Theory and Applications被引頻次學(xué)科排名




書目名稱Computer Science – Theory and Applications年度引用




書目名稱Computer Science – Theory and Applications年度引用學(xué)科排名




書目名稱Computer Science – Theory and Applications讀者反饋




書目名稱Computer Science – Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:20:20 | 只看該作者
Variants of the Determinant Polynomial and the ,-Completeness,olynomial which we call . and . and show that they are . and . complete respectively under .-projections. The definitions of the polynomials are inspired by a combinatorial characterisation of the determinant developed by Mahajan and Vinay (SODA 1997). We extend the combinatorial object in their wor
地板
發(fā)表于 2025-3-22 04:56:01 | 只看該作者
Dynamic Complexity of Expansion,.,.,., ., ., ., .] for some representative examples. Use of linear algebra has been a notable feature of some of these papers. We extend this theme to show that the gap version of spectral expansion in bounded degree graphs can be maintained in the class . (also known as ., for domain independent qu
5#
發(fā)表于 2025-3-22 11:04:28 | 只看該作者
Real ,-Conjecture for Sum-of-Squares: A Unified Approach to Lower Bound and Derandomization,n the number of distinct real roots of . is polynomially bounded in .. Assuming the conjecture with parameter ., one can show that . (i.e.?symbolic permanent requires superpolynomial-size circuit). In this paper, we propose a .-conjecture for sum-of-squares (SOS) model (equivalently, .)..For a univa
6#
發(fā)表于 2025-3-22 14:44:04 | 只看該作者
7#
發(fā)表于 2025-3-22 17:34:55 | 只看該作者
Approximation Schemes for Multiperiod Binary Knapsack Problems,otes the cumulative size for periods ., and a list of . items. Each item is a triple (.,?.,?.) where . denotes the reward or value of the item, . its size, and . denotes its time index (or, deadline). The goal is to choose, for each deadline ., which items to include to maximize the total reward, su
8#
發(fā)表于 2025-3-22 21:18:07 | 只看該作者
Limitations of Sums of Bounded Read Formulas and ABPs,ng task in algebraic complexity theory. We study representation of polynomials as sums of weaker models such as read once formulas (ROFs) and read once oblivious algebraic branching programs (ROABPs). We prove: .Our results are based on analysis of the partial derivative matrix under different distr
9#
發(fā)表于 2025-3-23 05:21:18 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民乐县| 交城县| 瑞昌市| 抚宁县| 丹阳市| 娱乐| 大关县| 名山县| 三原县| 岚皋县| 新源县| 高安市| 秭归县| 贡觉县| 大田县| 海盐县| 古交市| 微山县| 邮箱| 茂名市| 中方县| 板桥市| 灵武市| 乐陵市| 滨州市| 万安县| 石狮市| 北辰区| 临泽县| 贞丰县| 岐山县| 武清区| 偏关县| 平原县| 东辽县| 双鸭山市| 克山县| 彭泽县| 开鲁县| 奎屯市| 二连浩特市|