找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science – Theory and Applications; 13th International C Fedor V. Fomin,Vladimir V. Podolskii Conference proceedings 2018 Springer

[復制鏈接]
51#
發(fā)表于 2025-3-30 08:54:48 | 只看該作者
On Vertex Coloring Without Monochromatic Triangles,cted, simple graphs – the triangle-free chromatic number .. We bound . by other known structural parameters. We also present two classes of graphs with interesting coloring properties, that play pivotal role in proving useful observations about our problem.
52#
發(fā)表于 2025-3-30 12:58:45 | 只看該作者
53#
發(fā)表于 2025-3-30 17:57:04 | 只看該作者
Conference proceedings 2018The 24 full papers presented together with 7 invited lectures were carefully reviewed and selected from 42 submissions.? The papers cover a wide range of topics such as algorithms and data structures; combinatorial optimization; constraint solving; computational complexity; cryptography; combinatori
54#
發(fā)表于 2025-3-30 21:49:48 | 只看該作者
55#
發(fā)表于 2025-3-31 03:07:12 | 只看該作者
56#
發(fā)表于 2025-3-31 07:28:32 | 只看該作者
57#
發(fā)表于 2025-3-31 11:52:07 | 只看該作者
J. Mayo Greenberg,Celia X. Mendoza-Gómezng dichotomy: EKC is polytime solvable for . and NP-hard for .. Then, we show that EKC is W[1]-hard even when parameterized by .. In searching for an FPT algorithm, we consider the parameter “treewidth”, and design an FPT algorithm for EKC which runs in time ., where . is the treewidth of the input
58#
發(fā)表于 2025-3-31 13:35:20 | 只看該作者
The Biochemistry and Toxicology of Mercury,e (.). Furthermore, we obtain improved algorithms for conflict free version of several well studied problems. Next, we show that if . is characterized by a “well-behaved” infinite family of forbidden induced subgraphs, then .-.-. is .-hard. Motivated by this hardness result, we consider the paramete
59#
發(fā)表于 2025-3-31 19:03:59 | 只看該作者
60#
發(fā)表于 2025-3-31 21:55:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨眉山市| 泸水县| 湛江市| 卢氏县| 兴国县| 宁远县| 云浮市| 丹棱县| 潜山县| 辽阳市| 临湘市| 万山特区| 蒙自县| 成都市| 平定县| 原平市| 达孜县| 兴业县| 武城县| 祁连县| 芒康县| 南充市| 从化市| 青州市| 南江县| 梓潼县| 泽库县| 天门市| 慈溪市| 滨海县| 合肥市| 保靖县| 莱州市| 古浪县| 和政县| 丹寨县| 民勤县| 乾安县| 靖远县| 安远县| 聂荣县|