找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 21 International Wor Jacques Duparc,Thomas A. Henzinger Conference proceedings 2007 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Malevolent
51#
發(fā)表于 2025-3-30 10:56:28 | 只看該作者
The Power of Counting Logics on Restricted Classes of Finite Structures we present some other implications of this analysis. We then demonstrate the limits of this method by showing that the CFI construction cannot be used to show that IFP+C fails to capture . on proper minor-closed classes.
52#
發(fā)表于 2025-3-30 16:22:26 | 只看該作者
Satisfiability of a Spatial Logic with Tree Variables TQL formulas: intuitively, a formula is bounded if for any tree, the number of its positions where a subtree is captured by a variable is bounded. We prove this fragment to correspond with a subclass of TAGED, called bounded TAGED, for which we prove emptiness to be decidable. This implies the deci
53#
發(fā)表于 2025-3-30 17:39:03 | 只看該作者
On Acyclic Conjunctive Queries and Constant Delay Enumerationfollowing dichotomy for acyclic queries: either such a query is in .. or it cannot be enumerated with linear precomputation and constant delay. Furthermore we prove that testing whether an acyclic formula is in .. can be performed in polynomial time..Finally, the notion of free-connex treewidth of a
54#
發(fā)表于 2025-3-30 23:13:53 | 只看該作者
,The Calculus of Cauchy-Fantappiè Forms,exity among the known algorithms. Symbolic algorithms compute in terms of sets of states, or functions from states to real numbers, rather than single states; such sets or functions can often be represented symbolically (hence the name of the algorithms). Even though symbolic algorithms often cannot
55#
發(fā)表于 2025-3-31 02:56:19 | 只看該作者
Treatment of Radiation Urinary Tract Disease we present some other implications of this analysis. We then demonstrate the limits of this method by showing that the CFI construction cannot be used to show that IFP+C fails to capture . on proper minor-closed classes.
56#
發(fā)表于 2025-3-31 06:47:26 | 只看該作者
57#
發(fā)表于 2025-3-31 12:28:37 | 只看該作者
58#
發(fā)表于 2025-3-31 16:17:20 | 只看該作者
Full Completeness: Interactive and Geometric Characterizations of the Space of Proofs (Abstract)ltiplicative-Additive Linear Logic (MALL). We use tools from Domain theory to develop a semantic notion of proof net for MALL, and prove a Sequentialization Theorem. We also give an interactive criterion for strategies, formalized in the same Domain-theoretic setting, to come from proofs, and show t
59#
發(fā)表于 2025-3-31 18:43:30 | 只看該作者
60#
發(fā)表于 2025-4-1 01:20:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大庆市| 桓台县| 黄龙县| 阿巴嘎旗| 桐城市| 巴东县| 鄂温| 安宁市| 华容县| 彭阳县| 昭苏县| 茶陵县| 来安县| 银川市| 新建县| 高邑县| 成都市| 通州市| 陕西省| 阿荣旗| 镇安县| 通江县| 海兴县| 高陵县| 黄大仙区| 巴塘县| 丹棱县| 余江县| 三亚市| 禄劝| 吉隆县| 贵溪市| 涟水县| 崇义县| 中山市| 永平县| 浮梁县| 建阳市| 香河县| 洛川县| 阿合奇县|