找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 21 International Wor Jacques Duparc,Thomas A. Henzinger Conference proceedings 2007 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Malevolent
51#
發(fā)表于 2025-3-30 10:56:28 | 只看該作者
The Power of Counting Logics on Restricted Classes of Finite Structures we present some other implications of this analysis. We then demonstrate the limits of this method by showing that the CFI construction cannot be used to show that IFP+C fails to capture . on proper minor-closed classes.
52#
發(fā)表于 2025-3-30 16:22:26 | 只看該作者
Satisfiability of a Spatial Logic with Tree Variables TQL formulas: intuitively, a formula is bounded if for any tree, the number of its positions where a subtree is captured by a variable is bounded. We prove this fragment to correspond with a subclass of TAGED, called bounded TAGED, for which we prove emptiness to be decidable. This implies the deci
53#
發(fā)表于 2025-3-30 17:39:03 | 只看該作者
On Acyclic Conjunctive Queries and Constant Delay Enumerationfollowing dichotomy for acyclic queries: either such a query is in .. or it cannot be enumerated with linear precomputation and constant delay. Furthermore we prove that testing whether an acyclic formula is in .. can be performed in polynomial time..Finally, the notion of free-connex treewidth of a
54#
發(fā)表于 2025-3-30 23:13:53 | 只看該作者
,The Calculus of Cauchy-Fantappiè Forms,exity among the known algorithms. Symbolic algorithms compute in terms of sets of states, or functions from states to real numbers, rather than single states; such sets or functions can often be represented symbolically (hence the name of the algorithms). Even though symbolic algorithms often cannot
55#
發(fā)表于 2025-3-31 02:56:19 | 只看該作者
Treatment of Radiation Urinary Tract Disease we present some other implications of this analysis. We then demonstrate the limits of this method by showing that the CFI construction cannot be used to show that IFP+C fails to capture . on proper minor-closed classes.
56#
發(fā)表于 2025-3-31 06:47:26 | 只看該作者
57#
發(fā)表于 2025-3-31 12:28:37 | 只看該作者
58#
發(fā)表于 2025-3-31 16:17:20 | 只看該作者
Full Completeness: Interactive and Geometric Characterizations of the Space of Proofs (Abstract)ltiplicative-Additive Linear Logic (MALL). We use tools from Domain theory to develop a semantic notion of proof net for MALL, and prove a Sequentialization Theorem. We also give an interactive criterion for strategies, formalized in the same Domain-theoretic setting, to come from proofs, and show t
59#
發(fā)表于 2025-3-31 18:43:30 | 只看該作者
60#
發(fā)表于 2025-4-1 01:20:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
行唐县| 夏河县| 乌海市| 微山县| 安西县| 江津市| 冷水江市| 讷河市| 沈丘县| 宾川县| 青冈县| 天柱县| 乌拉特中旗| 阿坝县| 海城市| 平江县| 金堂县| 永昌县| 涞源县| 凌源市| 南宁市| 富锦市| 长丰县| 石泉县| 通渭县| 简阳市| 沂南县| 瓦房店市| 瓮安县| 江西省| 上虞市| 庆城县| 泰和县| 乐至县| 建昌县| 休宁县| 兴宁市| 班玛县| 无为县| 桐柏县| 黎平县|