找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 16th International W Julian Bradfield Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 2002 AI Logic.C

[復制鏈接]
樓主: 壓榨機
21#
發(fā)表于 2025-3-25 04:17:16 | 只看該作者
,United States-Vietnam Relations 1975–7,nally we allow storage of functions. We discuss similarities and differences between our model and Moggi’s model of ground store. A significant difference is that our model does not use monadic decomposition of the function type.
22#
發(fā)表于 2025-3-25 07:57:58 | 只看該作者
On Continuous Normalizationty as modulus of continuity. The number of repetition rules is locally related to the number of β-reductions necessary to reach the normal form (as represented by the B?hm tree) and the number of applications appearing in this normal form.
23#
發(fā)表于 2025-3-25 14:29:53 | 只看該作者
Configuration Theoriesre . corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in . [.]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the . memory model, and formally derive a non-trivial property of thread-memory interaction.
24#
發(fā)表于 2025-3-25 17:56:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:27:48 | 只看該作者
26#
發(fā)表于 2025-3-26 00:44:58 | 只看該作者
27#
發(fā)表于 2025-3-26 04:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 10:47:17 | 只看該作者
Limitation of liability and insurance,ntially, the result is that any formula of the μ-calculus expresses the existence of a strategy in a certain game. The idea of such a correspondence can be traced back to Büchi and McNaughton who observed a similar property of monadic second order arithmetic (see [.]).
29#
發(fā)表于 2025-3-26 13:30:24 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:46 | 只看該作者
Limitation of liability and insurance, and elimination of chain- and deletion rules depend on their inequational properties (and the idempotency of addition). It follows that these normal form theorems also hold in non-continuous semirings having enough fixed-points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沽源县| 昆山市| 西盟| 郓城县| 分宜县| 定西市| 赤城县| 澎湖县| 南木林县| 临夏市| 柳州市| 南投县| 平乡县| 阳城县| 凤翔县| 临颍县| 伊宁县| 平和县| 金阳县| 陈巴尔虎旗| 聊城市| 分宜县| 奇台县| 江西省| 阿合奇县| 扶风县| 手机| 洮南市| 治县。| 基隆市| 邮箱| 教育| 大丰市| 福安市| 塔城市| 安顺市| 思南县| 卫辉市| 淮滨县| 绥棱县| 繁峙县|