找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
21#
發(fā)表于 2025-3-25 05:21:55 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:13 | 只看該作者
Logics for context-free languages,th the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
23#
發(fā)表于 2025-3-25 13:13:42 | 只看該作者
Is first order contained in an initial segment of PTIME?,ls of this signature are all in an initial segment of P is shown to be related to other intriguing open problems in complexity theory and logic, like P=P...The second part of the paper strengthens the result of Ph. Kolaitis of logical definability of unambiguous computations.
24#
發(fā)表于 2025-3-25 17:28:46 | 只看該作者
Computer Science Logic978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
25#
發(fā)表于 2025-3-25 22:08:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:35:26 | 只看該作者
The Carolingian Debate over Sacred Spaceth the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
27#
發(fā)表于 2025-3-26 06:03:57 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:47:49 | 只看該作者
Monadic second-order logic and linear orderings of finite structures,We consider graphs in which it is possible to specify linear orderings of the sets of vertices, in uniform ways, by MS (i.e., Monadic Second-order) formulas. We also consider classes of graphs ? such that for every L.?, L is recognizable iff it is MS-definable. Our results concern in particular dependency graphs of partially commutative words.
30#
發(fā)表于 2025-3-26 20:31:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蕲春县| 东城区| 无锡市| 庄浪县| 宝丰县| 贵南县| 鄂托克旗| 凤山县| 广水市| 司法| 稻城县| 迁西县| 定兴县| 九龙县| 固始县| 广平县| 石门县| 邳州市| 商城县| 洪泽县| 沙坪坝区| 黎平县| 砀山县| 塔城市| 金溪县| 都兰县| 通化市| 白水县| 五大连池市| 镇坪县| 南通市| 广元市| 九台市| 乐业县| 儋州市| 都安| 清水河县| 宜都市| 巴青县| 青阳县| 溆浦县|