找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 9th International Wo Hans Kleine Büning Conference proceedings 1996 Springer-Verlag Berlin Heidelberg 1996 computer

[復(fù)制鏈接]
樓主: Malicious
41#
發(fā)表于 2025-3-28 15:12:57 | 只看該作者
On the modal logic K plus theories,proof search in K + . and discuss methods to improve the efficiency. An implementation of the resulting decision procedure is part of the Logics Workbench LWB..Then we show that — in contrast to K, KT, S4 — there are theories . and formulas . where a counter-model must have a superpolynomial diamete
42#
發(fā)表于 2025-3-28 20:17:55 | 只看該作者
Improved decision procedures for the modal logics K, T and S4, provide more efficient decision procedures than those hitherto known. In particular space requirements for our logics are lowered from the previously established bounds of the form .., .. and .. to . log . log ., and .. log . respectively.
43#
發(fā)表于 2025-3-29 01:09:24 | 只看該作者
44#
發(fā)表于 2025-3-29 03:28:17 | 只看該作者
45#
發(fā)表于 2025-3-29 10:52:28 | 只看該作者
Jae-Hyeong Park MD, PhD,Jin-Ok Jeong MD, PhDThe system of formal parametric polymorphism has the same theory as second order Peano arithmetic with regard to the provable equality of numerical functions.
46#
發(fā)表于 2025-3-29 13:31:51 | 只看該作者
47#
發(fā)表于 2025-3-29 16:55:21 | 只看該作者
48#
發(fā)表于 2025-3-29 20:11:45 | 只看該作者
A logical aspect of parametric polymorphism,The system of formal parametric polymorphism has the same theory as second order Peano arithmetic with regard to the provable equality of numerical functions.
49#
發(fā)表于 2025-3-30 01:05:29 | 只看該作者
https://doi.org/10.1007/3-540-61377-3computer; formal language; logic; proof theory; proving; selection; theorem proving
50#
發(fā)表于 2025-3-30 04:10:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
义乌市| 佛山市| 元江| 阳西县| 曲松县| 昔阳县| 大方县| 荆州市| 博兴县| 肃北| 和林格尔县| 黑龙江省| 高淳县| 鄂伦春自治旗| 衡山县| 龙泉市| 庆城县| 南投县| 祁连县| 罗田县| 潞西市| 徐水县| 赣榆县| 姜堰市| 娄烦县| 伽师县| 蓬溪县| 彭阳县| 泊头市| 济宁市| 香格里拉县| 甘谷县| 普宁市| 永胜县| 比如县| 塘沽区| 会理县| 天气| 乐安县| 广平县| 江陵县|