找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 6th Workshop, CSL‘92 E. B?rger,G. J?ger,M. M. Richter Conference proceedings 1993 Springer-Verlag Berlin Heidelberg

[復制鏈接]
樓主: Intimidate
11#
發(fā)表于 2025-3-23 11:02:54 | 只看該作者
The Costa Rican Human Development Story,g?delization there exist two lambda terms E (self-interpreter) and R (reductor), both having a normal form, such that for every (closed or open) lambda term . E?.?→. and if . has a normal form ., then R?.?→?.?.
12#
發(fā)表于 2025-3-23 17:37:37 | 只看該作者
https://doi.org/10.1007/978-94-007-3879-9lems, for example “reduction of incompletely specified automata” (in short: RISA), are NLINEAR-complete (consequently, NLINEAR ≠ DLINEAR iff RISA ? DLINEAR). That notion probably strengthens NP-completeness since we argue that propositional satisfiability is not NLINEAR-complete.
13#
發(fā)表于 2025-3-23 20:47:18 | 只看該作者
Algorithmic structuring of cut-free proofs, or tree-like LK-proofs (corresponds to the undecidability of second order unification), (2) undecidable for linear LK.-proofs (corresponds to the undecidability of semi-unification), and (3) decidable for tree-like LK.-proofs (corresponds to a decidable subproblem of semi-unification).
14#
發(fā)表于 2025-3-24 01:44:44 | 只看該作者
A self-interpreter of lambda calculus having a normal form,g?delization there exist two lambda terms E (self-interpreter) and R (reductor), both having a normal form, such that for every (closed or open) lambda term . E?.?→. and if . has a normal form ., then R?.?→?.?.
15#
發(fā)表于 2025-3-24 03:57:48 | 只看該作者
Linear time algorithms and NP-complete problems,lems, for example “reduction of incompletely specified automata” (in short: RISA), are NLINEAR-complete (consequently, NLINEAR ≠ DLINEAR iff RISA ? DLINEAR). That notion probably strengthens NP-completeness since we argue that propositional satisfiability is not NLINEAR-complete.
16#
發(fā)表于 2025-3-24 08:06:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:13:50 | 只看該作者
18#
發(fā)表于 2025-3-24 15:42:16 | 只看該作者
Recursive inseparability in linear logic, the computations and show how to extract ”finite counter models” from this structure. In that way we get a version of Trakhtenbrots theorem without going through a completeness theorem for propositional linear logic. Lastly we show that the interpolant . in propositional linear logic of a provable
19#
發(fā)表于 2025-3-24 22:40:20 | 只看該作者
20#
發(fā)表于 2025-3-24 23:34:06 | 只看該作者
A self-interpreter of lambda calculus having a normal form,combinator and using only normal forms. To this aim we introduce the notion of a canonical algebraic term rewriting system, and we show that any such system can be interpreted in the lambda calculus by the B?hm — Piperno technique in such a way that strong normalization is preserved. This allows us
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 07:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
论坛| 青铜峡市| 淳化县| 明星| 上犹县| 合川市| 获嘉县| 荆州市| 台南县| 胶南市| 泸定县| 郸城县| 惠州市| 闽侯县| 彝良县| 中江县| 临猗县| 灵山县| 静海县| 南部县| 雷山县| 桓台县| 衡山县| 绥江县| 荣昌县| 乐至县| 宁德市| 洞头县| 高邮市| 铁岭县| 金门县| 工布江达县| 集安市| 海丰县| 高阳县| 贺州市| 西畴县| 巍山| 连州市| 舞阳县| 长治市|