找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 6th Workshop, CSL‘92 E. B?rger,G. J?ger,M. M. Richter Conference proceedings 1993 Springer-Verlag Berlin Heidelberg

[復制鏈接]
樓主: Intimidate
11#
發(fā)表于 2025-3-23 11:02:54 | 只看該作者
The Costa Rican Human Development Story,g?delization there exist two lambda terms E (self-interpreter) and R (reductor), both having a normal form, such that for every (closed or open) lambda term . E?.?→. and if . has a normal form ., then R?.?→?.?.
12#
發(fā)表于 2025-3-23 17:37:37 | 只看該作者
https://doi.org/10.1007/978-94-007-3879-9lems, for example “reduction of incompletely specified automata” (in short: RISA), are NLINEAR-complete (consequently, NLINEAR ≠ DLINEAR iff RISA ? DLINEAR). That notion probably strengthens NP-completeness since we argue that propositional satisfiability is not NLINEAR-complete.
13#
發(fā)表于 2025-3-23 20:47:18 | 只看該作者
Algorithmic structuring of cut-free proofs, or tree-like LK-proofs (corresponds to the undecidability of second order unification), (2) undecidable for linear LK.-proofs (corresponds to the undecidability of semi-unification), and (3) decidable for tree-like LK.-proofs (corresponds to a decidable subproblem of semi-unification).
14#
發(fā)表于 2025-3-24 01:44:44 | 只看該作者
A self-interpreter of lambda calculus having a normal form,g?delization there exist two lambda terms E (self-interpreter) and R (reductor), both having a normal form, such that for every (closed or open) lambda term . E?.?→. and if . has a normal form ., then R?.?→?.?.
15#
發(fā)表于 2025-3-24 03:57:48 | 只看該作者
Linear time algorithms and NP-complete problems,lems, for example “reduction of incompletely specified automata” (in short: RISA), are NLINEAR-complete (consequently, NLINEAR ≠ DLINEAR iff RISA ? DLINEAR). That notion probably strengthens NP-completeness since we argue that propositional satisfiability is not NLINEAR-complete.
16#
發(fā)表于 2025-3-24 08:06:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:13:50 | 只看該作者
18#
發(fā)表于 2025-3-24 15:42:16 | 只看該作者
Recursive inseparability in linear logic, the computations and show how to extract ”finite counter models” from this structure. In that way we get a version of Trakhtenbrots theorem without going through a completeness theorem for propositional linear logic. Lastly we show that the interpolant . in propositional linear logic of a provable
19#
發(fā)表于 2025-3-24 22:40:20 | 只看該作者
20#
發(fā)表于 2025-3-24 23:34:06 | 只看該作者
A self-interpreter of lambda calculus having a normal form,combinator and using only normal forms. To this aim we introduce the notion of a canonical algebraic term rewriting system, and we show that any such system can be interpreted in the lambda calculus by the B?hm — Piperno technique in such a way that strong normalization is preserved. This allows us
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 07:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永登县| 尉犁县| 突泉县| 威海市| 昭觉县| 永平县| 沙洋县| 洛阳市| 安新县| 黎平县| 合山市| 长海县| 遵义县| 定远县| 大港区| 孟津县| 万山特区| 尉氏县| 八宿县| 仙游县| 绵阳市| 朝阳区| 蒙城县| 彭山县| 中宁县| 土默特左旗| 滁州市| 夏津县| 大宁县| 保德县| 林西县| 阿荣旗| 郎溪县| 怀宁县| 资溪县| 舒城县| 梨树县| 兰西县| 巴彦县| 宝兴县| 涟源市|