找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 10th International W Dirk Dalen,Marc Bezem Conference proceedings 1997 Springer-Verlag Berlin Heidelberg 1997 Compu

[復(fù)制鏈接]
樓主: vitamin-D
21#
發(fā)表于 2025-3-25 06:11:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:48:16 | 只看該作者
Peter A. Reese,William A. Priceem in the development of a general theory for algebraic type systems is to prove that typing is preserved under reduction (Subject Reduction lemma). In this paper, we propose a general technique to prove Subject Reduction for a large class of algebraic type systems. The idea is to consider for every
23#
發(fā)表于 2025-3-25 12:29:38 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:29 | 只看該作者
Sachin Patel,Cecilia J. Hillardtion obtained from the “geometry of interaction” interpretation of λ-calculus [5]..The calculus is obtained by synchronizing another graphical local calculus presented in “l(fā)ocal and asynchronous beta-reduction”: . [4]. This synchronization makes it easier to mechanize than general virtual reductions
25#
發(fā)表于 2025-3-25 20:11:13 | 只看該作者
26#
發(fā)表于 2025-3-26 03:13:18 | 只看該作者
27#
發(fā)表于 2025-3-26 04:52:19 | 只看該作者
28#
發(fā)表于 2025-3-26 12:26:12 | 只看該作者
29#
發(fā)表于 2025-3-26 14:04:13 | 只看該作者
Endocannabinoids and Their Synthetic Analogste rules have become more apparent. Not only does one obtain simultaneously the decidability of .-equality and a natural construction of the long .-normal forms, but rewrite relations using expansions retain key properties when combined with first order rewrite systems, generalise more easily to oth
30#
發(fā)表于 2025-3-26 19:45:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双辽市| 中宁县| 三台县| 峨眉山市| 昌江| 广丰县| 清丰县| 西丰县| 泾阳县| 靖边县| 昌乐县| 涡阳县| SHOW| 平顶山市| 隆化县| 呼和浩特市| 松溪县| 抚顺县| 三河市| 梅州市| 托克托县| 华坪县| 宜兴市| 罗甸县| 沁水县| 滨州市| 库尔勒市| 封丘县| 田林县| 佛坪县| 讷河市| 蓬溪县| 双辽市| 泗阳县| 宜城市| 博白县| 桐梓县| 敦煌市| 华宁县| 墨脱县| 昌都县|