找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Recognition Systems; Proceedings of 4th I Marek Kurzyński,Edward Pucha?a,Andrzej ?o?nierek Conference proceedings 2005 Springer-Ve

[復制鏈接]
樓主: interleukins
11#
發(fā)表于 2025-3-23 13:06:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:36:29 | 只看該作者
Margin-based Diversity Measures for Ensemble Classifiersfor three types of ensembles of linear classifiers. The tests show that these measures are better at predicting recognition accuracy than established diversity measures, such as . or disagreement measures, or entropy.
13#
發(fā)表于 2025-3-23 21:04:57 | 只看該作者
Time Series Patterns Recognition with Genetic Algorithmsan one answer to processed data or no response at all. Early testing results, including prediction and fitting of simple time series with missing data amount ranging from 10 to 50 percent, are presented at the end of this paper.
14#
發(fā)表于 2025-3-23 23:04:34 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:13 | 只看該作者
16#
發(fā)表于 2025-3-24 09:34:35 | 只看該作者
17#
發(fā)表于 2025-3-24 11:45:27 | 只看該作者
Feature Extraction with Wavelet Transformation for Statistical Object Recognitione different resolutions in the training phase. Experiments made on a real data set with 42240 images show that the recognition rates are much better using the resolution combination of the wavelet transformation.
18#
發(fā)表于 2025-3-24 18:04:48 | 只看該作者
Some elements of potential theorye solved or circumvented either by novel and better procedures, or by a better understanding of their causes. Here, we will try to identify a number of open issues and define them as well as possible.
19#
發(fā)表于 2025-3-24 21:57:37 | 只看該作者
Motivation of the local approachor learning in each boosting round. The new method achieves significantly better accuracy than both single FLD and FLD with boosting, with improvements reaching 6% in some cases. We show that the good performance can be attributed to higher diversity of the individual FLDs, as well as to the better generalization abilities.
20#
發(fā)表于 2025-3-25 02:07:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泰安市| 奈曼旗| 商城县| 东辽县| 抚州市| 资源县| 从化市| 黎城县| 宜宾县| 凌云县| 南平市| 阿瓦提县| 闻喜县| 衡南县| 顺平县| 高邑县| 濉溪县| 东港市| 宣城市| 临城县| 苏尼特左旗| 昌图县| 甘南县| 读书| 南宁市| 鹤山市| 兴义市| 禹城市| 五家渠市| 武隆县| 道真| 台东市| 云霄县| 万源市| 林州市| 华安县| 辰溪县| 吴旗县| 北川| 股票| 林周县|