找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Networks, Big Data and IoT; Proceedings of ICCBI A. Pasumpon Pandian,Xavier Fernando,Wang Haoxiang Conference proceedings 2022 The

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:59:50 | 只看該作者
https://doi.org/10.1007/978-981-99-8846-4sed along with available tools for simulation in an opportunistic network. The main objective of this article is to deal with current challenges in routing and to provide a future direction for the same.
32#
發(fā)表于 2025-3-27 03:13:33 | 只看該作者
Biodiversity: Concepts and Valueser than the standard .-means in lower dimensions. Furthermore, this article delves deeper into the effects of algorithm hyperparameters and dataset parameters on .-splits. Finally, it suggests using .-splits to uncover the exact position of centroids and then input them as initial points to the .-means algorithm to fine-tune the results.
33#
發(fā)表于 2025-3-27 05:57:50 | 只看該作者
34#
發(fā)表于 2025-3-27 12:02:47 | 只看該作者
35#
發(fā)表于 2025-3-27 13:53:37 | 只看該作者
36#
發(fā)表于 2025-3-27 21:08:40 | 只看該作者
Sign Language Interpreter,ir quarantine from the rest of the society notably. Results from this literature review could help in development of an efficient sign interpreter which helps for the communication between non-signer and a signer.
37#
發(fā)表于 2025-3-27 23:26:55 | 只看該作者
Performance Analysis and Assessment of Various Energy Efficient Clustering-Based Protocols in WSN,ced distributed energy efficient clustering (EDEEC) and stable election protocol (SEP) are executed. The analysis is carried out in terms of number of nodes and probability of election for cluster head (CH). The observations and results obtained for these protocols are presented.
38#
發(fā)表于 2025-3-28 03:07:45 | 只看該作者
39#
發(fā)表于 2025-3-28 09:07:13 | 只看該作者
K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect the Number of Clusters,er than the standard .-means in lower dimensions. Furthermore, this article delves deeper into the effects of algorithm hyperparameters and dataset parameters on .-splits. Finally, it suggests using .-splits to uncover the exact position of centroids and then input them as initial points to the .-means algorithm to fine-tune the results.
40#
發(fā)表于 2025-3-28 10:53:47 | 只看該作者
Optimisation of the Execution Time Using Hadoop-Based Parallel Machine Learning on Computing Clusteity and speed are developed after comprehensive examinations. In order to improve clustering quality and speed up the localised clustering solution, the MapReduce-K-means-distributed (MR-K-means) document clustering approach is implemented in the Hadoop framework using an efficient similarity metric.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀喇沁旗| 永兴县| 全南县| 阳新县| 涪陵区| 揭东县| 深泽县| 清镇市| 蛟河市| 山东省| 鹿邑县| 名山县| 富民县| 工布江达县| 黄梅县| 湛江市| 远安县| 鸡东县| 凌源市| 探索| 绵竹市| 汝城县| 东明县| 方城县| 云和县| 肥东县| 西和县| 余庆县| 太和县| 和政县| 故城县| 开阳县| 元江| 蕉岭县| 留坝县| 锦州市| 高平市| 青田县| 徐汇区| 东丰县| 高雄市|