找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Mathematics; 8th Asian Symposium, Deepak Kapur Conference proceedings 2008 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: mountebank
31#
發(fā)表于 2025-3-26 23:24:23 | 只看該作者
32#
發(fā)表于 2025-3-27 01:53:18 | 只看該作者
33#
發(fā)表于 2025-3-27 07:02:10 | 只看該作者
34#
發(fā)表于 2025-3-27 11:56:14 | 只看該作者
Thermodynamik chemischer Reaktionen,Solutions of the Laplacian are represented by expansion in series of the appropriate orthonormal functions. By using asymptotic relations of Bessel Series and Fourier Bessel series, we establish some criteria for the solution to properly reflect the nature of the conservative field.
35#
發(fā)表于 2025-3-27 15:40:06 | 只看該作者
36#
發(fā)表于 2025-3-27 18:12:46 | 只看該作者
Computing the Minkowski Value of the Exponential Function over a Complex Diskion to evaluating transcendental functions of complex sets are discussed. Specifically, the Minkowski value of the exponential function over a disk in the complex plane is considered, as the limit of partial–sum sets defined by the monomial or Horner evaluation schemes.
37#
發(fā)表于 2025-3-27 23:41:35 | 只看該作者
38#
發(fā)表于 2025-3-28 02:34:48 | 只看該作者
Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basisy abstracting from the classical polynomial division algorithm for polynomials represented with respect to the usual power basis. It is shown that these algorithms are quadratic in the degrees of their inputs, as in the power basis case.
39#
發(fā)表于 2025-3-28 06:49:06 | 只看該作者
40#
發(fā)表于 2025-3-28 13:28:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扬中市| 西宁市| 宾阳县| 碌曲县| 东辽县| 长乐市| 咸宁市| 宜城市| 阜阳市| 山西省| 合水县| 灵山县| 丁青县| 荆州市| 镇康县| 军事| 民勤县| 台州市| 九龙城区| 襄樊市| 刚察县| 侯马市| 岳阳市| 前郭尔| 淮安市| 虎林市| 田东县| 景宁| 离岛区| 尚志市| 仁寿县| 宁南县| 乐东| 贞丰县| 裕民县| 石狮市| 封开县| 仁寿县| 岳阳市| 莱芜市| 瓮安县|