找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Analysis of Images and Patterns; 18th International C Mario Vento,Gennaro Percannella Conference proceedings 2019 Springer Nature

[復制鏈接]
樓主: brachytherapy
31#
發(fā)表于 2025-3-26 22:54:30 | 只看該作者
32#
發(fā)表于 2025-3-27 01:35:56 | 只看該作者
Toward New Spherical Harmonic Shannon Entropy for Surface Modeling the optimal reconstruction order that best represent the initial surface. This paper proposed a new spherical harmonics shannon-type entropy to optimize reconstruction and to provide an accurate and efficient evaluation method of the reconstruction order.
33#
發(fā)表于 2025-3-27 05:41:36 | 只看該作者
Challenges and Methods of Violence Detection in Surveillance Video: A Surveylassify the methods into five broad categories. We discuss each category and present the main techniques that proposed improvements as well as some performance measures using public datasets to evaluate the different existing techniques of violence detection.
34#
發(fā)表于 2025-3-27 12:18:30 | 只看該作者
Binary Code for the Compact Palmprint Representation Using Texture Featuresxperiments performed on the benchmark PolyU palmprint database. Moreover, the reported results show that the obtained accuracy appears to be hardly dependent on the number of enrolled samples. The proposed representation may be extremely useful in real life applications because of its compactness and effectiveness.
35#
發(fā)表于 2025-3-27 13:51:30 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:51 | 只看該作者
https://doi.org/10.1007/BFb0096231ults in terms of accuracy and also reduce the overall epistemic uncertainty. To summarize, in this paper we propose a class-conditional data augmentation procedure that allows us to obtain better results and improve robustness of the classification in the face of model uncertainty.
37#
發(fā)表于 2025-3-27 22:12:06 | 只看該作者
Hybrid Function Sparse Representation Towards Image Super Resolution the results. In addition, a reconstruct strategy is adopted to deal with the overlaps. The experiments on ‘Set14’ SR dataset show that our method has an excellent performance particularly with regards to images containing rich details and contexts compared with non-learning based state-of-the art methods.
38#
發(fā)表于 2025-3-28 05:49:14 | 只看該作者
39#
發(fā)表于 2025-3-28 07:01:38 | 只看該作者
40#
發(fā)表于 2025-3-28 14:01:15 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 15:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嘉义市| 清水河县| 天津市| 凯里市| 石楼县| 兴和县| 淳安县| 松滋市| 苏尼特左旗| 黄骅市| 凤山市| 东方市| 衡南县| 翼城县| 秦安县| 福贡县| 榆中县| 桐梓县| 昌平区| 綦江县| 余江县| 筠连县| 本溪| 吐鲁番市| 元氏县| 萍乡市| 阿图什市| 卢龙县| 巴彦淖尔市| 广宗县| 北海市| 广宗县| 公主岭市| 新源县| 邻水| 闽侯县| 井研县| 深水埗区| 张家港市| 芮城县| 义马市|