找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra in Scientific Computing CASC 2001; Proceedings of the F Victor G. Ganzha,Ernst W. Mayr,Evgenii V. Vorozhts Conference proc

[復制鏈接]
樓主: 從未沮喪
31#
發(fā)表于 2025-3-27 00:54:03 | 只看該作者
32#
發(fā)表于 2025-3-27 02:17:53 | 只看該作者
Cooperation between a Dynamic Geometry Environment and a Computer Algebra System for Geometric Discon domain of geometric discovery, which supports this claim. When interfacing a standard dynamic geometry environment and Mathematica, we enhance the educational uses of geometric problem solving environments through the symbolic capabilities of computer algebra software.
33#
發(fā)表于 2025-3-27 07:50:54 | 只看該作者
On the Stability of Steady Motions of Solar-Sail Satellite,ined, and Lyapunov’s method has been employed to investigate their stability. The sufficient conditions are compared with the necessary ones. To the end of solving the problem, the capabilities of the software “Stability” for symbolic computations have been used [1].
34#
發(fā)表于 2025-3-27 10:30:53 | 只看該作者
35#
發(fā)表于 2025-3-27 14:34:19 | 只看該作者
, and Nilpotent Lie Superalgebras, these superalgebras with arbitrary dimension of even part and dimension of odd part up to three. By using the software . we classify these superalgebras for arbitrary dimension of even part and dimension of odd part up to two.
36#
發(fā)表于 2025-3-27 19:56:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:50:45 | 只看該作者
Recurrence Functions and Numerical Characteristics of Graphs,ce functions of graphs. The combinatorial objects, the so-called (.)-placements, are used. The algorithm, which can be realized on PC and allows to reveal some relations between the numerical characteristics of graphs, is resulted.
38#
發(fā)表于 2025-3-28 05:29:47 | 只看該作者
39#
發(fā)表于 2025-3-28 09:36:35 | 只看該作者
978-3-642-62684-5Springer-Verlag Berlin Heidelberg 2001
40#
發(fā)表于 2025-3-28 13:05:53 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沁阳市| 海口市| 定远县| 晋城| 克什克腾旗| 固阳县| 焉耆| 岱山县| 雷波县| 应用必备| 米泉市| 九龙城区| 玛沁县| 都匀市| 沭阳县| 行唐县| 利川市| 津南区| 新巴尔虎左旗| 旌德县| 陇西县| 莆田市| 休宁县| 项城市| 米脂县| 东乌珠穆沁旗| 临江市| 高唐县| 清镇市| 出国| 庐江县| 芒康县| 龙江县| 从化市| 上饶市| 文昌市| 即墨市| 永嘉县| 淅川县| 大理市| 内丘县|