找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra in Scientific Computing; 21st International W Matthew England,Wolfram Koepf,Evgenii V. Vorozhtso Conference proceedings 20

[復(fù)制鏈接]
樓主: 和善
41#
發(fā)表于 2025-3-28 17:17:14 | 只看該作者
On Characteristic Decomposition and Quasi-characteristic Decomposition,on when the variable ordering condition is always satisfied, otherwise it degenerates to compute the quasi one. Some properties of quasi-characteristic pairs and decomposition are proved, and examples are given to illustrate the algorithm.
42#
發(fā)表于 2025-3-28 20:27:14 | 只看該作者
43#
發(fā)表于 2025-3-28 23:37:48 | 只看該作者
Symbolic Investigation of the Dynamics of a System of Two Connected Bodies Moving Along a Circular ves in the space of system parameters that determine boundaries of domains with a fixed number of equilibria of the two–body system were obtained symbolically. Depending on the parameters of the problem, the number of equilibria was found by analyzing the real roots of the algebraic equations.
44#
發(fā)表于 2025-3-29 03:50:11 | 只看該作者
Root-Finding with Implicit Deflation,nd reversion of an input polynomial. We also show another unexplored direction for substantial further progress in this long and extensively studied area. Namely we dramatically increase the local efficiency of root-finding by means of the incorporation of fast algorithms for multipoint polynomial evaluation and Fast Multipole Method.
45#
發(fā)表于 2025-3-29 11:19:29 | 只看該作者
0302-9743 eld in Moscow, Russia, in August 2019..The 28 full papers presented together with 2 invited talks were carefully reviewed and selected from 44 submissions. They deal with cutting-edge research in all major disciplines of computer algebra. The papers cover topics such as polynomial algebra, symbolic
46#
發(fā)表于 2025-3-29 13:37:36 | 只看該作者
Felix L. Schwenninger,Marcus Waurickng those of the third kind, thereby providing a conceptual basis for their exploration and exact evaluation, bypassing typical troubles of common software in calculating CEI. Detailed clarifying examples are provided.
47#
發(fā)表于 2025-3-29 16:25:49 | 只看該作者
48#
發(fā)表于 2025-3-29 19:45:36 | 只看該作者
49#
發(fā)表于 2025-3-30 00:02:29 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:17 | 只看該作者
An Arithmetic-Geometric Mean of a Third Kind!,ng those of the third kind, thereby providing a conceptual basis for their exploration and exact evaluation, bypassing typical troubles of common software in calculating CEI. Detailed clarifying examples are provided.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙里县| 嵊州市| 东明县| 平塘县| 新丰县| 科技| 兴义市| 呼伦贝尔市| 罗定市| 彰化县| 云浮市| 岱山县| 呼玛县| 通化县| 瓦房店市| 温州市| 宁化县| 晋江市| 新竹县| 龙南县| 青冈县| 沾益县| 长沙县| 沧州市| 称多县| 聂拉木县| 凤山县| 仙游县| 永宁县| 上杭县| 沐川县| 绍兴市| 蕉岭县| 竹北市| 江西省| 宣恩县| 鹤庆县| 新乐市| 郎溪县| 靖安县| 穆棱市|