找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra and Polynomials; Applications of Alge Jaime Gutierrez,Josef Schicho,Martin Weimann Book 2015 Springer International Publis

[復(fù)制鏈接]
樓主: LANK
11#
發(fā)表于 2025-3-23 10:00:50 | 只看該作者
12#
發(fā)表于 2025-3-23 16:20:19 | 只看該作者
https://doi.org/10.1007/BFb0033653Let an algebraic group be given, acting on a vector space. We consider the problem of deciding whether a given element of the vector space lies in the closure of the orbit of another given element. We?describe three methods for dealing with this problem that have appeared in the literature. We illustrate the methods by examples.
13#
發(fā)表于 2025-3-23 20:19:29 | 只看該作者
Orbit Closures of Linear Algebraic Groups,Let an algebraic group be given, acting on a vector space. We consider the problem of deciding whether a given element of the vector space lies in the closure of the orbit of another given element. We?describe three methods for dealing with this problem that have appeared in the literature. We illustrate the methods by examples.
14#
發(fā)表于 2025-3-23 22:31:36 | 只看該作者
Atmosphere system governing equations,lications in enumerative combinatorics. Topics include geometric modeling in combinatorics, Ehrhart’s method for proving that a counting function is a polynomial, the connection between polyhedral cones, rational functions and quasisymmetric functions, methods for bounding coefficients, combinatoria
15#
發(fā)表于 2025-3-24 06:25:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:41:54 | 只看該作者
17#
發(fā)表于 2025-3-24 10:53:56 | 只看該作者
18#
發(fā)表于 2025-3-24 15:43:05 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:24 | 只看該作者
20#
發(fā)表于 2025-3-25 00:16:49 | 只看該作者
Atmosphere system governing equations,th respect to a non-degenerate quadric, which gives us a notion of orthogonality. In particular we relate the reciprocal polar varieties to the “Euclidean geometry” in projective space. The Euclidean distance degree and the degree of the focal loci can be expressed in terms of the?ranks, i.e., the d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
七台河市| 滦平县| 新丰县| 和顺县| 保德县| 浦县| 洪泽县| 嘉鱼县| 拉孜县| 浙江省| 新龙县| 钦州市| 长沙县| 铜山县| 赣榆县| 金华市| 东宁县| 朝阳县| 长岭县| 临西县| 宁津县| 射阳县| 石泉县| 大余县| 宁城县| 泸西县| 高淳县| 沅陵县| 辽阳县| 弥渡县| 萝北县| 平罗县| 余庆县| 深州市| 南江县| 西宁市| 启东市| 高淳县| 孙吴县| 梅州市| 平利县|