找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Computer Algebra Recipes; A Gourmet’s Guide to Richard H. Enns,George C. McGuire Textbook 2001 Springer Science+Business Media New York 200

[復(fù)制鏈接]
樓主: Scuttle
61#
發(fā)表于 2025-4-1 03:51:57 | 只看該作者
Linear ODE Models Typically, college science students do not begin to deal seriously with linear ODEs until their second and third years, starting out with equations which have constant coefficients and then moving on to special ODEs with variable coefficients such as Bessel’s equation, the Legendre and Hermite equa
62#
發(fā)表于 2025-4-1 06:08:34 | 只看該作者
Nonlinear ODE Modelse attempting to solve the model equations. An example was the period doubling route to chaos exhibited by the Duffing equation . when the amphtude . of the driving force was increased, the other parameters being held fixed. If the nonlinear term, β.., were not present, this “bizarre” period doubling
63#
發(fā)表于 2025-4-1 11:13:20 | 只看該作者
64#
發(fā)表于 2025-4-1 14:53:06 | 只看該作者
Fractal Patternsa zebra we probably first think of its most prominent feature, its stripes. When we look at certain butterflies, it is usually the colorful markings on the wings that grab our attention. If we study magnified ice crystals, our interest is captivated by the richness and regularity of the patterns dis
65#
發(fā)表于 2025-4-1 19:38:49 | 只看該作者
Diagnostic Tools for Nonlinear Dynamicsase-plane portraits and the location and identification of the relevant stationary points of the ODE system. For nonlinear maps, discussed in Chapter 8, similar graphical constructions also proved useful for understanding the behavior of the map as a control parameter was changed.
66#
發(fā)表于 2025-4-2 02:44:23 | 只看該作者
67#
發(fā)表于 2025-4-2 06:54:11 | 只看該作者
Nonlinear PDE Models: Soliton Solutionsumerical schemes to linear and nonlinear PDEs will be given in Chapter 14. There exist special analytic solutions to some nonhnear PDEs of physical interest, the most well-known being so-called . solutions of nonlinear wave equations, the subject of this chapter. A soliton is a stable . or pulse. A
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 西丰县| 乌鲁木齐县| 三亚市| 商城县| 噶尔县| 浙江省| 丰顺县| 鸡西市| 贡觉县| 阳西县| 日喀则市| 象山县| 施秉县| 石屏县| 海林市| 陆川县| 嘉峪关市| 缙云县| 黑水县| 九龙县| 永州市| 自治县| 凤山市| 昌宁县| 施甸县| 达拉特旗| 微山县| 宝应县| 滦平县| 顺平县| 水城县| 盈江县| 周口市| 扎兰屯市| 施秉县| 梅河口市| 葵青区| 即墨市| 类乌齐县| 太仆寺旗|