找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computations in Algebraic Geometry with Macaulay 2; David Eisenbud,Michael Stillman,Bernd Sturmfels Textbook 2002 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: Addendum
31#
發(fā)表于 2025-3-26 22:35:49 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:15 | 只看該作者
Michele Brignole,David G. Benditt we develop a program that produces random curves of genus . ≤ 14. In the second part we use the program to test Green’s Conjecture on syzygies of canonical curves and compare it with the corresponding statement for Coble self-dual sets of points. In the third section we apply our techniques to produce Calabi-Yau 3-folds of degree 17 in ?..
33#
發(fā)表于 2025-3-27 07:02:23 | 只看該作者
34#
發(fā)表于 2025-3-27 12:57:36 | 只看該作者
https://doi.org/10.1057/9780230509559dules over a complete intersection. The duals of these infinite projective resolutions are finitely generated differential graded modules over a graded polynomial ring, so they can be represented in the computer, and can be used to compute Ext modules simultaneously in all homological degrees. It is
35#
發(fā)表于 2025-3-27 14:55:11 | 只看該作者
36#
發(fā)表于 2025-3-27 18:44:09 | 只看該作者
37#
發(fā)表于 2025-3-28 00:34:02 | 只看該作者
From Enumerative Geometry to Solving Systems of Polynomial Equationsicit solutions to such systems, and mathematics has instead developed deep and powerful theories about the solutions to polynomial equations. Enumerative Geometry is concerned with counting the number of solutions when the polynomials come from a geometric situation and Intersection Theory gives methods to accomplish the enumeration.
38#
發(fā)表于 2025-3-28 06:07:27 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:33 | 只看該作者
David Eisenbud,Michael Stillman,Bernd SturmfelsOnly textbook using Macaulay as a tool.Computational algebraic geometry presented in the optimal way by top researchers.Includes supplementary material:
40#
發(fā)表于 2025-3-28 13:07:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
容城县| 阜新市| 托克逊县| 阿合奇县| 临沂市| 明星| 佛山市| 原平市| 宜都市| 津市市| 元朗区| 汾阳市| 崇义县| 象山县| 南通市| 虞城县| 松滋市| 石首市| 建湖县| 高密市| 齐齐哈尔市| 清丰县| 高邮市| 德格县| 盱眙县| 讷河市| 沽源县| 黄陵县| 长寿区| 铜山县| 布尔津县| 德保县| 凤凰县| 乌拉特后旗| 武平县| 永兴县| 会同县| 桃源县| 长葛市| 柘荣县| 田东县|