找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Robotic Models of the Hierarchical Organization of Behavior; Gianluca Baldassarre,Marco Mirolli Book 2013 Springer-Verla

[復制鏈接]
樓主: 初生
31#
發(fā)表于 2025-3-27 00:48:51 | 只看該作者
The Hierarchical Organisation of Cortical and Basal-Ganglia Systems: A Computationally-Informed Revil picture that emerges is that the cortical and the basal ganglia systems form two highly-organised hierarchical systems working in close synergy and jointly solving all the challenges of choice, selection, and implementation needed to acquire and express adaptive behaviour.
32#
發(fā)表于 2025-3-27 01:22:02 | 只看該作者
Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humansmplished by identifying useful subgoal states, and that this might in turn be accomplished through a structural analysis of the given task domain. We review results from a set of behavioral and neuroimaging experiments, in which we have investigated the relevance of these ideas to human learning and
33#
發(fā)表于 2025-3-27 06:52:07 | 只看該作者
34#
發(fā)表于 2025-3-27 09:34:55 | 只看該作者
Book 2013 of the brain. They might even lead to the cumulative acquisition of an ever-increasing number of skills, which seems to be a characteristic of mammals, and humans in particular..This book is a comprehensive overview of the state of the art on the modeling of the hierarchical organization of behavio
35#
發(fā)表于 2025-3-27 14:19:15 | 只看該作者
Book 2013t of control architectures and learning algorithms that can support the acquisition and deployment of several different skills, which in turn seems to require a modular and hierarchical organization. In this way, different modules can acquire different skills without catastrophic interference, and h
36#
發(fā)表于 2025-3-27 20:24:10 | 只看該作者
37#
發(fā)表于 2025-3-27 22:30:42 | 只看該作者
Panayiotis Tsokas,Robert D. Blitzercal reinforcement learning to illustrate the influence of behavioral hierarchy on exploration and representation. Beyond illustrating these features, the examples provide support for the central role of behavioral hierarchy in development and learning for both artificial and natural agents.
38#
發(fā)表于 2025-3-28 03:03:50 | 只看該作者
Behavioral Hierarchy: Exploration and Representationcal reinforcement learning to illustrate the influence of behavioral hierarchy on exploration and representation. Beyond illustrating these features, the examples provide support for the central role of behavioral hierarchy in development and learning for both artificial and natural agents.
39#
發(fā)表于 2025-3-28 09:15:37 | 只看該作者
Peter R. Dunkley,Phillip J. Robinsonand interference is examined together with some interpretations in terms of computational models. Finally, we present some possible approaches to the issue of learning multiple tasks while avoiding catastrophic interference in bio-inspired learning architectures.
40#
發(fā)表于 2025-3-28 13:06:20 | 只看該作者
Generalization and Interference in Human Motor Controland interference is examined together with some interpretations in terms of computational models. Finally, we present some possible approaches to the issue of learning multiple tasks while avoiding catastrophic interference in bio-inspired learning architectures.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
眉山市| 莎车县| 井冈山市| 太白县| 衢州市| 德保县| 汉阴县| 买车| 镇平县| 宁阳县| 通化市| 新干县| 武夷山市| 天门市| 金乡县| 南阳市| 隆德县| 永泰县| 玛纳斯县| 社旗县| 喜德县| 秭归县| 尼勒克县| 武邑县| 蓬莱市| 凤山市| 尉犁县| 北辰区| 上栗县| 辰溪县| 资源县| 洛浦县| 太保市| 兰坪| 榆林市| 正蓝旗| 龙游县| 五寨县| 建昌县| 绥芬河市| 武平县|