找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Constructive Design Theory; W. D. Wallis Book 19961st edition Springer Science+Business Media Dordrecht 1996 Morphism.Vo

[復(fù)制鏈接]
樓主: 不幸的你
31#
發(fā)表于 2025-3-26 21:47:53 | 只看該作者
32#
發(fā)表于 2025-3-27 03:41:51 | 只看該作者
https://doi.org/10.1007/978-3-319-24566-9s and .-designs are emphasized. Classical results and algorithms in polyhedral theory are summarized, integer programming formulation of design construction problems are presented, and polyhedra associated to these formulations and related algorithms are discussed.
33#
發(fā)表于 2025-3-27 08:33:40 | 只看該作者
34#
發(fā)表于 2025-3-27 12:45:39 | 只看該作者
Symmetry Properties of Moleculessuch that every element occurs exactly . times and every pair exactly λ times. A (22, 33, 12, 8, 4)-BIBD is the set of parameters with the smallest . for which it is not known whether a BIBD exists or not. A survey of what is known about such a design is given.
35#
發(fā)表于 2025-3-27 16:52:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:50 | 只看該作者
37#
發(fā)表于 2025-3-28 00:55:14 | 只看該作者
Symmetry Properties of Moleculessuch that every element occurs exactly . times and every pair exactly λ times. A (22, 33, 12, 8, 4)-BIBD is the set of parameters with the smallest . for which it is not known whether a BIBD exists or not. A survey of what is known about such a design is given.
38#
發(fā)表于 2025-3-28 04:04:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-4074-7Searching for a new combinatorial design can be an intimidating task. This paper is a tutorial in the art of discovering designs.
39#
發(fā)表于 2025-3-28 09:53:49 | 只看該作者
40#
發(fā)表于 2025-3-28 12:45:13 | 只看該作者
The First Time,Searching for a new combinatorial design can be an intimidating task. This paper is a tutorial in the art of discovering designs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珠海市| 鄱阳县| 襄城县| 遵义市| 芮城县| 枣强县| 西宁市| 遂昌县| 陈巴尔虎旗| 成武县| 抚远县| 尼玛县| 彭州市| 类乌齐县| 瑞昌市| 太仆寺旗| 江口县| 南充市| 抚顺县| 日照市| 木里| 得荣县| 克拉玛依市| 蓝山县| 绥宁县| 榆社县| 福清市| 潜江市| 吉木乃县| 芒康县| 涟源市| 醴陵市| 荣昌县| 铁岭市| 茌平县| 晋中市| 长武县| 南昌县| 高邑县| 香河县| 东兴市|